#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num, number_to_send, message_received;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 number_to_send = my_PE_num;

 if (my_PE_num==7)
 MPI_Send(&number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);
 else
 MPI_Send(&number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);

 MPI_Recv(&message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);

 printf("PE %d received %d.\n", my_PE_num, message_received);

 MPI_Finalize();
}
program shifter
implicit none
include 'mpif.h'
integer my_pe_num, errcode, numbertosend, message_received
integer status(MPI_STATUS_SIZE)
call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)
numbertosend = my_pe_num
if (my_pe_num.EQ.7) then
 call MPI_Send(numbertosend, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
else
 call MPI_Send(numbertosend, 1, MPI_INTEGER, my_pe_num+1, 10, MPI_COMM_WORLD, errcode)
endif
call MPI_Recv(message_received, 1, MPI_INTEGER, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, status, errcode)
print *,'PE', my_pe_num, ' received ', message_received, '.
call MPI_FINALIZE(errcode)
end
Exercise 1
Output

c557-603$ pgcc solution1.c
c557-603$ mpirun -n 8 a.out
PE 2 received 1.
PE 0 received 7.
PE 4 received 3.
PE 3 received 2.
PE 5 received 4.
PE 1 received 0.
PE 7 received 6.
PE 6 received 5.
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num, number_to_send, message_received;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 number_to_send = my_PE_num;
 if (my_PE_num==7)
 MPI_Ssend(&number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);
 else
 MPI_Ssend(&number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);
 MPI_Recv(&message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
 printf("PE %d received %d.\n", my_PE_num, message_received);
 MPI_Finalize();
}
```c
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
    int my_PE_num, number_to_send, message_received;
    MPI_Status status;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

    number_to_send = my_PE_num;

    if (my_PE_num==7){
        MPI_Recv( &message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
        MPI_Ssend( &number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);
    } else{
        MPI_Ssend( &number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);
        MPI_Recv( &message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
    }

    printf("PE %d received %d.\n", my_PE_num, message_received);
    MPI_Finalize();
}
```

Exercise 1
For the pedants...

Breaks the Deadlock!
Exercise 2
Impossible Solution

- There is no possible solution.
- You can not accomplish this task with the commands you were given.
- It is simply impossible to be sure there isn’t a node somewhere “out there” that hasn’t yet responded.
- It is possible to create many “solutions” that will work *almost* all of the time. Particularly on a tightly coupled machine like Stampede.
- What if Bridges was nodes spread around the solar system. Would your answer still work?
- It is generally not hard to write MPI codes that will *always* work. I gave you a really tricky problem to keep you humble.
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv) {
 int my_PE_num, numberofnodes, data;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (numberofnodes=1; numberofnodes<512; numberofnodes++)
 if (MPI_Send(&data, 1, MPI_INT, numberofnodes, 10, MPI_COMM_WORLD) != MPI_SUCCESS)
 break;

 printf("The number of nodes is %d.", numberofnodes);
 MPI_Finalize();
}