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Finished?

If you have finished, we can review a few principles that you have inevitably applied.  

If you have not, there won’t be any spoilers here.  It you want spoilers, you should 

look in ~training/Laplace at

laplace_mpi.f90

laplace_mpi.c

We have a lot more exercise time today, and you also have your accounts through at 

least next week.  So don’t feel pressured to give up or cheat.



Two things I know you did.

Even though I may not have been looking over your shoulder, I know that you had to 

apply the domain decomposition process that we discussed is universal to MPI 

programming.  In this case you had to:

1) Identify the main data structures of the code:

 Temperature   and  Temperature_last

2) Decompose both those data structures with a forward looking strategy:

  C   Fortran



Digging through all the code

This code has subroutines, like all real codes.  And, like all real codes, you have to 

follow the main data structures that you are modifying into those subroutines.

If you had to decompose it, you almost always have to tweak the code that involves 

that data structure.

Here, you had to modify the boundary conditions and you had to modify the IO

On the other hand, you did not have to modify the kernel, or real math, or 

effectively the science of the code.  This is also typical of a real MPI port.



Careful of the deadlocks

PE 0

The classic “ghost zone” data exchange.

PE 1 PE 2 PE 3



Two Blocking Methods

There are two similar ways of coding this that we might try:

MPI_Send(to left)
MPI_Send(to right)
MPI_Recv(from left)
MPI_Recv(from right)

On Blue Waters they both worked OK solving the beginning 1000x1000 problem.  But when we scaled 

up to the full competition size (10000x10000) one of them hangs.  Where?

MPI_Send(to left)
MPI_Recv(from right)
MPI_Send(to right)
MPI_Recv(from left)

PE’s 1-3 are blocking sending to the left, and PE 0 is blocking on the send to the right.



Hung…

PE’s 1-3 are blocking sending to the left, and PE 0 is blocking on the send to 

the right.

PE 0 PE 1 PE 2 PE 3

Is our other solution truly the answer?  Note that using MPI_Ssend() here would have caught this problem 

right away!

MPI_Send(to left)
MPI_Send(to right)
MPI_Recv(from left)
MPI_Recv(from right)



Cascading Messages

At least the second solution doesn’t’ hang.  But it does results in a sequential process here that we don’t 

really want.

PE 0

Might want to use non-blocking…

PE 1 PE 2 PE 3

MPI_Send(to left)
MPI_Recv(from right)
MPI_Send(to right)
MPI_Recv(from left)



Running to convergence

3372 iterations to converge to 0.01 max delta.

Note that all versions converge on the same iteration.  This kind of repeatability should be expected.  However, exact binary 

repeatability is usually not possible due simply to floating point operation reordering.

Scaling off the node will typically be much better than scaling on the node for a well written problem of this type run at normal scale.

To run on 4 nodes you need to request 4 nodes from the queue: interact -N 4 -n 4 -p RM

Serial (s) 4 Cores 4 Nodes Speedup

C 21.4 5.5 5.6 3.9

Fortran 20.6 5.2 5.3 4.0

The above was the default ("mpicc laplace.c") for the 21.1 compiler. If you really care about performance you should use the -O3 

optimize option ("mpicc -O3 laplace.c"). In which case you will find results like:

C (-O3) 3.5 0.7 0.6 5.0



Vs. OpenMP

For all our efforts, we only achieved a speedup of roughly what we could do with a few lines of OpenMP on the 

same 4 cores.  Why would we ever use MPI on a problem of this type?

The answer is simply that OpenMP is limited to the size of the single largest node (by which we probably 

mean box, or blade, or perhaps even cabinet).  Bridges has some very large nodes (12TB with 260 cores), 

and even then you would find the performance falls off  when using all the cores.

Our MPI code can run across any networked collection of equipment we can assemble.  On Bridges this can 

realistically be all 800+ nodes, each with many cores.  And for MPI jobs, there are even larger machines out 

there.

And, as we will discuss with hybrid computing, you can combine both approaches quite comfortably.  They are 

designed to do so.



MPI has lots of ways to make this even easier

Some trivial to just edit right in:

• MPI_Sendrecv

Some with little effort, but a bigger payoff:

• Defined Data Types: MPI_Type_commit

• Non-Blocking Messages: Isend

• Persistent Communications: MPI_Send_Init

And some that require more thought, but would be appropriate for an Exascale code:

• MPI_Put

We will get to all of these options in the Advanced MPI talk.



Send_init and Recv_init as used by a Summer Boot Camp Hybrid Challenge winner

call MPI_Send_Init(temperature(1,columns), rows, MPI_DOUBLE_PRECISION, right, lr, MPI_COMM_WORLD, request(1), ierr)
call MPI_Recv_Init(temperature_last(1,0), rows, MPI_DOUBLE_PRECISION, left, lr, MPI_COMM_WORLD, request(2), ierr)
// 8 of these as winning solution did a 2D (left, right, up, down) decomposition on 10,000 x 10,000 size problem
 .
 .

do while ( dt_global > max_temp_error .and. iteration <= max_iterations)

         do j=1,columns
            do i=1,rows
               temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
                                      temperature_last(i,j+1)+temperature_last(i,j-1) )
            enddo
         enddo
 .
 .
         call MPI_StartAll(8,request,statuses)
         
         dt=0.0
 .
         do j=1,columns
            do i=1,rows
               dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
               temperature_last(i,j) = temperature(i,j)
            enddo
         enddo
 .
 .
         call MPI_WaitAll(8,request,statuses,ierr)
 .
 .
enddo

Allow communications to 

overlap with the 

temperature_last update 

and maximum delta 

search.

Make sure all is 

complete before 

using this data in 

the next iteration.



Model Improvements

The Laplace code is a realistic serial-to-MPI example.  We can extend this example 

even further into the world of real application codes with some modifications that 

you could pursue.

1) 3D.  To make this code into a full 3D application would be a straightforward, if 

tedious, addition of indices to the arrays and loops.  However, you would have to 

reconsider your data decomposition and your communication routines would now 

have to pass larger 2D “surfaces” (non-blocking messages) of ghost cell data 

instead of just strips (user defined datatypes).

2) Data Decomposition….



Data Decomposition

Whether we go to 3D or not, it is desirable, and usually necessary, that the code be able to run on 

variable numbers of PEs. Sometimes you have 4 PEs, and sometimes you have 3,144,412 to use.

Furthermore, real problems are not usually so "cartesian". MPI excels at these additional 

constraints. Indeed, it is often the only practical option.

However, the techniques that enable this flexibility benefit greatly from some of the additional MPI 

routines that we have yet to cover.

Domain decompositions can be quite complex in applications 

with irregular shapes.
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