
Introduction

to

MPI

John Urbanic

Parallel Computing Scientist

Pittsburgh Supercomputing Center

Distinguished Service Professor

Carnegie Mellon University

Copyright 2025

Pre-Introduction:
Why Use MPI?

•Has been around a long time (30+ years)
•Dominant
•Will be around a long time (on all new platforms/roadmaps)
•Lots of libraries
•Lots of algorithms
•Very scalable (10,000,000+ cores right now)
•Portable
•Works with hybrid models
•Explicit parallel routines force the programmer to address parallelization from the
beginning, not as an afterthought. This can enable both debugging and memory
placement optimization.

•Therefore:
– A good long term learning investment
– Useful/possible to understand whether you are coder or a user

Introduction
What is MPI? The Message-Passing Interface Standard(MPI) is a library that allows you to do problems in
parallel using message-passing to communicate between processes.

•Library
It is not a language (like X10 or UPC), or even an extension to a language. Instead, it is a library that your
native, standard, serial compiler (f77, f90, cc, CC, python, etc.) uses.

•Message Passing
Message passing is sometimes referred “paradigm”. But it is really just any method of explicitly passing data
between processes and it is flexible enough to implement most other paradigms (Data Parallel, Work
Sharing, etc.). It can be defined as having independent processors, with no shared data, communicate
through subroutine calls.

•Communicate
This communication may be via a dedicated MPP torus network, or merely an office LAN. To the MPI
programmer, it looks much the same.

•Processes
These can be 200,000 cores on Summit, or 40 processes on your laptop. Think “Unix process” and you
won’t be far off, although we usually want only 1 process per processor/core so that we actually get a speed
up.

Basic MPI
In order to do parallel programming, you require some basic functionality, namely, the
ability to:

– Start Processes
– Send Messages
– Receive Messages
– Synchronize

With these four capabilities, you can construct any program. We will look at the basic
versions of the MPI routines that implement this capability. MPI-3 offers over 400
functions. These are largely just more convenient and efficient for certain tasks.
However, with the handful that we are about to learn, we will be able to implement
just about any algorithm, and you will be well-prepared for when we cover much of
the remaining routines in the Advanced talk.

First Example (Starting Processes): Hello World

The easiest way to see exactly how a parallel code is put together and run is to write the
classic "Hello World" program in parallel. In this case it simply means that every PE will say
hello to us. Something like this:

mpirun –n 8 a.out

Hello from 0.

Hello from 1.

Hello from 2.

Hello from 3.

Hello from 4.

Hello from 5.

Hello from 6.

Hello from 7.

Hello World: C Code

How complicated is the code to do this? Not very:

#include <stdio.h>

 #include "mpi.h"

 main(int argc, char** argv){

 int my_PE_num;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 printf("Hello from %d.\n", my_PE_num);

 MPI_Finalize();

 }

Hello World: Fortran Code
Here is the Fortran version:

program hello

 include 'mpif.h'

 integer my_pe_num, errcode
 call MPI_INIT(errcode)
 call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)
 print *, 'Hello from ', my_pe_num,'.'
 call MPI_FINALIZE(errcode)
 end program hello

We will make an effort to present both languages here, but they are really trivially similar in
these simple examples, so try to play along on both.

MPI Routine Guidelines

Let’s make a few general observations before we
go into what is actually happening here:

• We have to include the header file, either
mpif.h or mpi.h. MPI-3 can use the (much
better) “USE mpi_f08” for Fortran.

• The MPI calls are easy to spot, they always
start with MPI_. The MPI calls themselves are
the same for both languages except that the
Fortran routines have an added argument on
the end to return the error condition (optional
in MPI-3), whereas the C ones return it as the
function value.

• We should check these (for MPI_SUCCESS) in
both cases as it can be very useful for
debugging. We don’t in these examples for
clarity. You probably won’t because of
laziness.

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

program hello
 include 'mpif.h'

 integer my_pe_num, errcode
 call MPI_INIT(errcode)
 call MPI_COMM_RANK(MPI_COMM_WORLD,
 my_pe_num, errcode)
 print *, 'Hello from ', my_pe_num,'.'
 call MPI_FINALIZE(errcode)
 end

MPI_INIT, MPI_FINALIZE and MPI_COMM_RANK

OK, lets look at the actual MPI routines. All three of the ones we have here
are very basic and will appear in any MPI code.

MPI_INIT
This routine must be the first MPI routine you call (it does not have to be
the first statement). It sets things up and might do a lot of behind-the-
scenes work on some cluster-type systems (like start daemons and such).
On most dedicated MPPs, it won’t do much. We just have to have it. In C,
it is common to to pass along the command line arguments. These are very
standard C variables that contain anything entered on the command line
when the executable was run. You may have used them before in normal
serial codes. You can usually use NULL for both of these arguments, but we
will stick with the normal convention.

MPI_FINALIZE
This is the companion to MPI_Init. It must be the last MPI_Call. It may do a
lot of housekeeping, or it may not. Your code won’t know or care.

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

MPI_COMM_RANK
Now we get a little more interesting. This routine returns to every PE its rank, or unique address from 0 to PEs-1. This is the only thing that
sets each PE apart from its companions. In this case, the number is merely used to have each PE print a slightly different message. In general,
though, the PE number will be used to load different data files or take different branches in the code. It has another argument, the
communicator, that we will ignore for a few slides.

What’s
Happening?

Hello from 5.
Hello from 3.
Hello from 1.
Hello from 2.
Hello from 7.
Hello from 0.
Hello from 6.
Hello from 4.

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

Keep This Picture

PE 0 PE 1 PE 2 PE 3 PE 4

PE 7 PE 13PE 12

PE 5

PE 11

PE 6

PE 10PE 9PE 8

mpirun -n 8 a.out

A Few Interesting Details

Hello from 5.
Hello from 3.
Hello from 1.
Hello from 2.
Hello from 7.
Hello from 0.
Hello from 6.
Hello from 4.

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

There are two behaviors here that may not have been expected. The most obvious is that the output might seems out
of order. The response to that is "what order were you expecting?" Remember, the code was started on all nodes
practically simultaneously. There was no reason to expect one node to finish before another. Indeed, if we rerun the
code we will probably get a different order. Sometimes it may seem that there is a very repeatable order. But, one
important rule of parallel computing is don't assume that there is any particular order to events unless there is
something to guarantee it. Later on we will see how we could force a particular order on this output.

The second question you might ask is “how does the output know where to go?” A good question. In the case of a
cluster, it isn’t at all clear that a bunch of separate Unix boxes printing to standard out will somehow combine them all
on one terminal. Indeed, you should appreciate that a dedicated MPP environment will automatically do this for you –
even so you should expect a lot of buffering (hint: use flush if you must). Of course most “serious” IO is file-based and
will depend upon a distributed file system (you hope).

Do all nodes really run the same code?

Yes, they do run the same code independently. You might think this is a serious constraint on
getting each PE to do unique work. Not at all. They can use their PE numbers to diverge in
behavior as much as they like.

The extreme case of this is to have different PEs execute entirely different sections of code based
upon their PE number.

 if (my_PE_num = 0)
 Routine_SpaceInvaders
 else if (my_PE_num = 1)
 Routine_CrackPasswords
 else if (my_PE_num =2)
 Routine_WeatherForecast
 .
 .
 .

So, we can see that even though we have a logical limitation of having each PE execute the same
program, for all practical purposes we can really have each PE running an entirely unrelated
program by bundling them all into one executable and then calling them as separate routines
based upon PE number.

Manager and Worker PEs

The much more common case is to have a single PE that is used for some sort of coordination
purpose, and the other PEs run code that is the same, although the data will be different. This is
how one would implement a manager/worker paradigm.

 if (my_PE_num = 0)
 ManagerCodeRoutine
 else
 WorkerCodeRoutine

Of course, the above Hello World code is the trivial case of

 EveryBodyRunThisRoutine

and consequently the only difference will be in the output, as it at least uses the PE number.

An Analogy To Remember

• Think of an MPI program as a book our group is reading.
We might all start at the same time, but I wouldn’t expect
us to all be on the same line at any point.

• Furthermore, some of our books are “choose your own
adventures”. We might each be taking a different path.

• So, it doesn’t make sense to ask what line an MPI program
is on.

• I might also ask each of you to rate each chapter. These are
analogous to variables; you each have your own copy.

• So it doesn’t make sense to ask what the value of any
variable is. There are multiple copies.

Communicators
Our last little detail in Hello World is the first parameter in

MPI_Comm_rank (MPI_COMM_WORLD, &my_PE_num)

This parameter is known as the "communicator" and can be found in many of the MPI routines. In
general, it is used so that one can divide up the PEs into subsets for various algorithmic purposes.
For example, if we had an array - distributed across the PEs – for which we wished to find the
determinant, we could define some subset of the PEs that holds a certain column of the array so
that we could address only that column conveniently. Or, we might wish to define a communicator
for just the odd PEs. Or just the “ocean” PEs in a weather model. You get the idea.

However, this is a convenience that can be dispensed with in simpler algorithms. As such, one will
often see the value MPI_COMM_WORLD when a communicator is required. This is simply the global
set and states we don't really care to deal with any particular subset here. We will use it in all of our
examples. We will delve into its considerable usefulness in the Advanced talk.

Compiling
Before we move on, let’s see how we compile and run this thing - just so you don’t think we are skipping any magic. We compile using a
normal ANSI C or Fortran 90 compiler (many other languages are also available).

Most MPI configurations provide a convenient wrapper to spare us finding the required libraries. Usually called mpicc or mpif90*. Don't let
that distract you from the fact that we are using absolutely standard serial compilers.

For our C codes:

mpicc hello.c

For our Fortran codes:

mpif90 hello.f

We now have an executable called a.out (the default).

*Intel has an infuriating practice of calling theirs the easily mistaken mpiicc.

Running
To run an MPI executable we must tell the machine how many copies we wish to run
at runtime. On Bridges you can choose any number up to the size of your job
request. We'll try 8. The command is mpirun:

mpirun –n 8 a.out
Hello from 5.
Hello from 3.
Hello from 1.
Hello from 2.
Hello from 7.
Hello from 0.
Hello from 6.
Hello from 4.

Which is (almost) what we desired when we started.

It really does just copy and run.

If you start to think there is more to mpirun than starting multiple copies of an executable, try this simple experiment.

Basic serial "hello world": #include <stdio.h>

 int main(int argc, char *argv[]) {
 printf("Hello\n");
 }

Compile with cc: cc hello.c

Run with mpirun: mpirun -n 4 a.out

This is what you get: Hello

Hello

Hello

Hello

No MPI anywhere in the code.

Fundamental Concept of MPI
Do you get it?

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
 printf("Hello from %d.\n", my_PE_num);
 MPI_Finalize();
}

program hello
include 'mpif.h'

integer my_pe_num, errcode

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)
print *, 'Hello from ', my_pe_num,'.'
call MPI_FINALIZE(errcode)
end

Hello from 5.
Hello from 3.
Hello from 1.
Hello from 2.
Hello from 7.
Hello from 0.
Hello from 6.
Hello from 4.

Second Example: Sending and Receiving Messages

Hello World might be illustrative, but we haven't really done
any message passing yet.

 Let's write about the simplest possible message passing
program:

 It will run on 2 PEs and will send a simple message (the number
42) from PE 1 to PE 0. PE 0 will then print this out.

Sending a Message
Sending a message is a simple procedure. In our case the routine will look like this in C
(the common pages are in C, so you should get used to seeing this format):

 MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD)

&numbertosend a pointer to whatever we wish to send. In this case it is simply an integer. It could be anything from a character string to a column
of an array or a structure. It is even possible to pack several different data types in one message.

1
the number of items we wish to send. If we were sending a vector of 10 int's, we would point to the first one in the above
parameter and set this to the size of the array.

MPI_INT the type of object we are sending. Possible values are: MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG, MPI_UNSIGNED_CHAR,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED, MPI_UNSIGNED_LING, MPI_FLOAT, MPI_DOUBLE, MPI_LONG_DOUBLE, MPI_BYTE,
MPI_PACKED Most of these are obvious in use. MPI_BYTE will send raw bytes (on a heterogeneous workstation cluster this will
suppress any data conversion). MPI_PACKED can be used to pack multiple data types in one message, and we can also define out
own types. We will save that for the advanced talk.

0 Destination of the message. In this case PE 0.

10 Message tag. All messages have a tag attached to them that can be very useful for sorting messages. For example, one could give
high priority control messages a different tag then data messages. When receiving, the program would check for messages that use
the control tag first. We just picked 10 at random.

MPI_COMM_WORLD We don't really care about any subsets of PEs here. So, we just chose this "default".

Receiving a Message

Receiving a message is equally simple and very symmetric with MPI_Send (hint: cut
and paste is your friend here). In our case it will look like:

MPI_Recv(&numbertoreceive, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,MPI_COMM_WORLD, &status)

&numbertoreceive A pointer to the variable that will receive the item. In our case it is simply an integer that has has some undefined value
until now.

1 Number of items to receive. Just 1 here.

MPI_INT Datatype. Better be an int, since that's what we sent.

MPI_ANY_SOURCE The node to receive from. We could use 1 here since the message is coming from there, but we'll illustrate the "wild card"
method of receiving a message from anywhere.

MPI_ANY_TAG We could use a value of 10 here to filter out any other messages (there aren't any) but, again, this was a convenient place
to show how to receive any tag.

MPI_COMM_WORLD Just using default set of all PEs.

&status A structure that receives the status data which includes the source and tag of the message.

Send and Receive C Code

#include <stdio.h>

#include "mpi.h"

main(int argc, char** argv){

int my_PE_num, numbertoreceive, numbertosend=42;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

if (my_PE_num==0){

 MPI_Recv(&numbertoreceive, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 printf("Number received is: %d\n", numbertoreceive);

}

else MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

MPI_Finalize(); }

Send and Receive Fortran Code

program sender
implicit none
include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend, status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 42

if (my_PE_num.EQ.0) then
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER,MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, status, errcode)
 print *, 'Number received is:‘ ,numbertoreceive
endif

if (my_PE_num.EQ.1) then
 call MPI_Send(numbertosend, 1,MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)

end

A Peek Behind The Curtain

You can ignore the next 13 (very fast) slides, and still write correct code.

However, many of you can't help but wonder, "What is really going on when a message is passed?", or
"Why are there these alternative ways of doing things?"

Since I always get those questions anyway, I am going to take a moment to step through these details.

Do not get intimidated and think you need to absorb all of this or you won't be able to use MPI. Just
follow along and we will be back to writing simple code in a moment.

Default MPI Messaging

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A Copy to Send

“MPI_Send”

Array A Copy Send

Array A Copy Received

“MPI_Recv”

Send makes a copy

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

Array A Copy to Send

“MPI_Send(A, PE 1)”

Why make a copy?

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

Array A Copy to Send

“A[12][32] = 18”

Message in flight

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

Array A copy sent

“X = Y + Z * 4”

Sitting in receive queue

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

Array A copy sent

“w = 3.14159 * 2”

Received

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

“goto some_where” “MPI_Recv(A, PE 0)”

Receive Queue
The message queue contains all of the message that have already arrived.
You can just grab the next one in the queue with MPI_ANY_SOURCE and
MPI_ANY_TAG, or you can be selective.

Source Tag Results in Data

1 2 4444
3 2 1008*
2 1 43*
2 2 56
ANY_SOURCE 2 1008 or 4444 or 56*
1 ANY_TAG 4444*

* MPI’s only ordering guarantee is that messages from the same source will
stay in order. So, you will receive and retrieve the first sent message from any
source first.

Note that communicators can also function as filters, but data types and data
counts do not. Mismatched data types are an error, and may not even be
detected at runtime!

Message Queue on PE 0

Data Source Tag

43 2 1
1008 3 2
4444 1 2
80999 2 1
5345 3 1
9044 1 1
5666 3 1
339 2 1
346 3 2
789879 2 1
78942 2 1
56 2 2
44509 1 1

Non-Blocking Sends and Receives

All of the receives that we are using here are blocking. This means that they will wait
until a message matching their requirements for source and tag has been received into
the queue.

The default Sends try not to block, but don’t guarantee it. As your data structures grow
large, this blocking behavior may well emerge.

Blocking MPI_Send

PE 0

Send
Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

“MPI_Send(A, PE 1)” “X = Y + 4”

“A[12][32] = 18”

Receive Issued

PE 0

Send
Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A

“MPI_Send(A, PE 1)”

Chunk of A

Chunk of A

Chunk of A

Chunk of A

“MPI_Recv(A, PE 0)”

Non-Blocking Sends and Receives

This may seem like a strictly performance issue, but it is not. What about the very
common case of:

PE 0
.
.
MPI_Send(A, PE 1)
MPI_Recv(A, PE 1)
.
.

PE 1
.
.
MPI_Send(A, PE 0)
MPI_Recv(A, PE 0)
.
.

If both PEs block on Send, we have a deadlock. The code will hang forever.

Swap A

Non-Blocking Sends and Receives

This is a very useful subject, but we can comfortably defer it until the
Advanced MPI talk because:

• It straightforward to convert blocking sends and receives to non-blocking
when needed.

• It is often (but not always) easier to implement and debug a code with
blocking and then optimize to non-blocking.

• It would clutter up our examples with additional complexity and would not
gain us anything here.

Communication Modes
There are also variations on the normal blocking send and receive that alter the standard
buffering behavior and may buy some optimization with little effort. If your algorithm is set up
correctly, it may be just a matter of changing one letter in the routine and you have a speedier
code. There are four possible modes (with differently named MPI_XSEND routines) for
buffering and sending messages in MPI. We use the standard mode for all of our work.

Standard mode Send will usually not block even if a receive for that message has not occurred. Exception is if
there are resource limitations (buffer space).

Buffered Mode
MPI_Bsend

Similar to above, but will never block (just return error).

Synchronous Mode
MPI_Ssend

Will only return when matching receive has started. No extra buffer copy needed, but also
can’t do any additional computation. Good for checking code safety.

Ready Mode
MPI_Rsend

Will only work if matching receive is already waiting. Must be well synchronized or behavior
is undefined.

But it really is quite simple

#include <stdio.h>

#include "mpi.h"

main(int argc, char** argv){

int my_PE_num, numbertoreceive, numbertosend=42;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

if (my_PE_num==0){

 MPI_Recv(&numbertoreceive, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 printf("Number received is: %d\n", numbertoreceive);

}

else MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

MPI_Finalize(); }

But it really is quite simple

program sender
implicit none
include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend, status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 42

if (my_PE_num.EQ.0) then
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER,MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, status, errcode)
 print *, 'Number received is:‘ ,numbertoreceive
endif

if (my_PE_num.EQ.1) then
 call MPI_Send(numbertosend, 1,MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)

end

Third Example: Synchronization

We are going to write another code which will employ the remaining tool that
we need for general parallel programming: synchronization. Many algorithms
require that you be able to get all of the nodes into some controlled state
before proceeding to the next stage. This is usually done with a
synchronization point that requires all of the nodes (or some specified subset
at the least) to reach a certain point before proceeding. Sometimes the
manner in which messages block will achieve this same result implicitly, but it
is often necessary to explicitly do this and debugging is often greatly aided by
the insertion of synchronization points which are later removed for the sake
of efficiency.

Third Example: Synchronization
Our code will perform the rather pointless operations of:

1) Have PE 0 send a number to the other 3 PEs

2) have them multiply that number by their own PE number

3) they will then print the results out, in order (remember the hello world program?)

4) and send them back to PE 0

5) which will print out the sum.

Foreshadowing:
Broadcast

MPI_Bcast()

Synchronize
MPI_Barrier()

Reduction
MPI_Reduce()

Synchronization: C Code
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

 int my_PE_num, numbertoreceive, numbertosend=4,index, result=0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (index=1; index<4; index++)
 MPI_Send(&numbertosend, 1,MPI_INT, index, 10,MPI_COMM_WORLD);
 else{
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 result = numbertoreceive * my_PE_num;
 }

 for (index=1; index<4; index++){
 MPI_Barrier(MPI_COMM_WORLD);
 if (index==my_PE_num) printf("PE %d's result is %d.\n", my_PE_num, result);
 }

 if (my_PE_num==0){
 for (index=1; index<4; index++){
 MPI_Recv(&numbertoreceive, 1,MPI_INT,index,10, MPI_COMM_WORLD, &status);
 result += numbertoreceive;
 }
 printf("Total is %d.\n", result);
 }
 else
 MPI_Send(&result, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
}

Synchronization: Fortran Code
program synch
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend
integer index, result
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 4
result = 0

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)
 enddo
else
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)
 result = numbertoreceive * my_PE_num
endif

do index=1,3
 call MPI_Barrier(MPI_COMM_WORLD, errcode)
 if (my_PE_num.EQ.index) then
 print *, 'PE ',my_PE_num,'s result is ',result,'.'
 endif
enddo

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, index,10, MPI_COMM_WORLD, status, errcode)
 result = result + numbertoreceive
 enddo
 print *,'Total is ',result,'.'
else
 call MPI_Send(result, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)
end

Step 1 – Manager, Worker
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

 int my_PE_num, numbertoreceive, numbertosend=4,index, result=0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (index=1; index<4; index++)
 MPI_Send(&numbertosend, 1,MPI_INT, index, 10,MPI_COMM_WORLD);
 else{
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 result = numbertoreceive * my_PE_num;
 }

 for (index=1; index<4; index++){
 MPI_Barrier(MPI_COMM_WORLD);
 if (index==my_PE_num) printf("PE %d's result is %d.\n", my_PE_num, result);
 }

 if (my_PE_num==0){
 for (index=1; index<4; index++){
 MPI_Recv(&numbertoreceive, 1,MPI_INT,index,10, MPI_COMM_WORLD, &status);
 result += numbertoreceive;
 }
 printf("Total is %d.\n", result);
 }
 else
 MPI_Send(&result, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
}

Step 2 – Manager, Worker
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

 int my_PE_num, numbertoreceive, numbertosend=4,index, result=0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (index=1; index<4; index++)
 MPI_Send(&numbertosend, 1,MPI_INT, index, 10,MPI_COMM_WORLD);
 else{
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 result = numbertoreceive * my_PE_num;
 }

 for (index=1; index<4; index++){
 MPI_Barrier(MPI_COMM_WORLD);
 if (index==my_PE_num) printf("PE %d's result is %d.\n", my_PE_num, result);
 }

 if (my_PE_num==0){
 for (index=1; index<4; index++){
 MPI_Recv(&numbertoreceive, 1,MPI_INT,index,10, MPI_COMM_WORLD, &status);
 result += numbertoreceive;
 }
 printf("Total is %d.\n", result);
 }
 else
 MPI_Send(&result, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
}

Step 3: Print in order…

Remember Hello World’s random order? What if we did:

IF myPE=0 PRINT “Hello from 0.”
IF myPE=1 PRINT “Hello from 1.”
IF myPE=2 PRINT “Hello from 2.”
IF myPE=3 PRINT “Hello from 3.”
IF myPE=4 PRINT “Hello from 4.”
IF myPE=5 PRINT “Hello from 5.”
IF myPE=6 PRINT “Hello from 6.”
IF myPE=7 PRINT “Hello from 7.”

Would this print in order?

What if one PE was 1,000,000 times faster than another?

Step 3: Print in order…

No. How about?

IF myPE=0 PRINT “Hello from 0.”
BARRIER
IF myPE=1 PRINT “Hello from 1.”
BARRIER
IF myPE=2 PRINT “Hello from 2.”
BARRIER
IF myPE=3 PRINT “Hello from 3.”
BARRIER
IF myPE=4 PRINT “Hello from 4.”
BARRIER
IF myPE=5 PRINT “Hello from 5.”
BARRIER
IF myPE=6 PRINT “Hello from 6.”
BARRIER
IF myPE=7 PRINT “Hello from 7.”

Would this print in order?

What if one PE was 1,000,000 times faster than another?

If you liked our Book Club analogy,
this is like saying “everyone stop when
you get to Chapter 2, then we can
continue.”

Step 3: Print in order…

Now let’s be lazy:

FOR X = 0 to 7

 IF MyPE = X

 PRINT “Hello from MyPE.”

 BARRIER

This is a common idiom.

Step 3 – Manager, Worker
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

 int my_PE_num, numbertoreceive, numbertosend=4,index, result=0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (index=1; index<4; index++)
 MPI_Send(&numbertosend, 1,MPI_INT, index, 10,MPI_COMM_WORLD);
 else{
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 result = numbertoreceive * my_PE_num;
 }

 for (index=1; index<4; index++){
 MPI_Barrier(MPI_COMM_WORLD);
 if (index==my_PE_num) printf("PE %d's result is %d.\n", my_PE_num, result);
 }

 if (my_PE_num==0){
 for (index=1; index<4; index++){
 MPI_Recv(&numbertoreceive, 1,MPI_INT,index,10, MPI_COMM_WORLD, &status);
 result += numbertoreceive;
 }
 printf("Total is %d.\n", result);
 }
 else
 MPI_Send(&result, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
}

Step 4 – Manager, Worker
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

 int my_PE_num, numbertoreceive, numbertosend=4,index, result=0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (index=1; index<4; index++)
 MPI_Send(&numbertosend, 1,MPI_INT, index, 10,MPI_COMM_WORLD);
 else{
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 result = numbertoreceive * my_PE_num;
 }

 for (index=1; index<4; index++){
 MPI_Barrier(MPI_COMM_WORLD);
 if (index==my_PE_num) printf("PE %d's result is %d.\n", my_PE_num, result);
 }

 if (my_PE_num==0){
 for (index=1; index<4; index++){
 MPI_Recv(&numbertoreceive, 1,MPI_INT,index,10, MPI_COMM_WORLD, &status);
 result += numbertoreceive;
 }
 printf("Total is %d.\n", result);
 }
 else
 MPI_Send(&result, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
}

Step 5 – Manager, Worker
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

 int my_PE_num, numbertoreceive, numbertosend=4,index, result=0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (index=1; index<4; index++)
 MPI_Send(&numbertosend, 1,MPI_INT, index, 10,MPI_COMM_WORLD);
 else{
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 result = numbertoreceive * my_PE_num;
 }

 for (index=1; index<4; index++){
 MPI_Barrier(MPI_COMM_WORLD);
 if (index==my_PE_num) printf("PE %d's result is %d.\n", my_PE_num, result);
 }

 if (my_PE_num==0){
 for (index=1; index<4; index++){
 MPI_Recv(&numbertoreceive, 1,MPI_INT,index,10, MPI_COMM_WORLD, &status);
 result += numbertoreceive;
 }
 printf("Total is %d.\n", result);
 }
 else
 MPI_Send(&result, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
}

Step 1 – Manager, Worker
program synch
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend
integer index, result
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 4
result = 0

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)
 enddo
else
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)
 result = numbertoreceive * my_PE_num
endif

do index=1,3
 call MPI_Barrier(MPI_COMM_WORLD, errcode)
 if (my_PE_num.EQ.index) then
 print *, 'PE ',my_PE_num,'s result is ',result,'.'
 endif
enddo

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, index,10, MPI_COMM_WORLD, status, errcode)
 result = result + numbertoreceive
 enddo
 print *,'Total is ',result,'.'
else
 call MPI_Send(result, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)
end

Step 2 – Manager, Worker
program synch
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend
integer index, result
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 4
result = 0

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)
 enddo
else
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)
 result = numbertoreceive * my_PE_num
endif

do index=1,3
 call MPI_Barrier(MPI_COMM_WORLD, errcode)
 if (my_PE_num.EQ.index) then
 print *, 'PE ',my_PE_num,'s result is ',result,'.'
 endif
enddo

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, index,10, MPI_COMM_WORLD, status, errcode)
 result = result + numbertoreceive
 enddo
 print *,'Total is ',result,'.'
else
 call MPI_Send(result, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)
end

Step 3 – Manager, Worker
program synch
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend
integer index, result
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 4
result = 0

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)
 enddo
else
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)
 result = numbertoreceive * my_PE_num
endif

do index=1,3
 call MPI_Barrier(MPI_COMM_WORLD, errcode)
 if (my_PE_num.EQ.index) then
 print *, 'PE ',my_PE_num,'s result is ',result,'.'
 endif
enddo

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, index,10, MPI_COMM_WORLD, status, errcode)
 result = result + numbertoreceive
 enddo
 print *,'Total is ',result,'.'
else
 call MPI_Send(result, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)
end

Step 4 – Manager, Worker
program synch
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend
integer index, result
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 4
result = 0

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)
 enddo
else
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)
 result = numbertoreceive * my_PE_num
endif

do index=1,3
 call MPI_Barrier(MPI_COMM_WORLD, errcode)
 if (my_PE_num.EQ.index) then
 print *, 'PE ',my_PE_num,'s result is ',result,'.'
 endif
enddo

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, index,10, MPI_COMM_WORLD, status, errcode)
 result = result + numbertoreceive
 enddo
 print *,'Total is ',result,'.'
else
 call MPI_Send(result, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)
end

Step 5 – Manager, Worker
program synch
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertoreceive, numbertosend
integer index, result
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = 4
result = 0

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)
 enddo
else
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)
 result = numbertoreceive * my_PE_num
endif

do index=1,3
 call MPI_Barrier(MPI_COMM_WORLD, errcode)
 if (my_PE_num.EQ.index) then
 print *, 'PE ',my_PE_num,'s result is ',result,'.'
 endif
enddo

if (my_PE_num.EQ.0) then
 do index=1,3
 call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, index,10, MPI_COMM_WORLD, status, errcode)
 result = result + numbertoreceive
 enddo
 print *,'Total is ',result,'.'
else
 call MPI_Send(result, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
endif

call MPI_FINALIZE(errcode)
end

Results of “Synchronization”

The output you get when running this codes with 4 PEs is:

What would happen if you ran with more than 4 PEs? Less?

PE 1’s result is 4.

PE 2’s result is 8.

PE 3’s result is 12.

Total is 24

A Few Words About MPI_Barrier

Barriers are often necessary.

Barriers are often convenient. They can help with debugging, and
are sometimes put in just to avoid thinking about possible race
conditions. These unnecessary barriers can cause wasteful idle
time and should be eventually eliminated.

Think of them like a race car driver thinks about brakes. You don't
want to use them more than required, but you aren't going to get
anywhere without them.

Analysis of “Synchronization”

The best way to make sure that you understand what is happening in the
code above is to look at things from the perspective of each PE in turn.
THIS IS THE WAY TO DEBUG ANY MESSAGE-PASSING CODE.

Follow from the top to the bottom of the code as PE 0, and do likewise for
PE 1. See exactly where one PE is dependent on another to proceed. Look
at each PEs progress as though it is 100 times faster or slower than the
other nodes. Would this affect the final program flow? It shouldn't unless
you made assumptions that are not always valid.

Speaking of Debugging...

The good old-fashioned print statement is a fine way to get started debugging. Maybe with little elaboration like

 printf("Got to point B on PE %d \n", my_PE_num);

You will find these scattered around many codes in development. Especially as the most common symptom of an MPI bug is that
PEs just "hang" because of blocking messages, and you need to figure out where.

However, this is often many coders introduction to the phenomenon of IO buffering. It can make your prints come out in funny
order, or seem to disappear. You can investigate how to get your system to properly flush output, but this can be frustrating as
many flush commands are simply ignored or overridden by the system.

One technique I have found very useful is to take advantage of the fact that stderr is usually unbuffered:

 Fortran:

 write(0,*) my_pe_num

 C:

 fprintf(stderr,"PE %d\n", my_PE_num);

Final Example: Beyond the Basics

You now have the 4 primitives that you need to write any
algorithm. However, there are much more efficient ways to
accomplish certain tasks, both in terms of typing and computing.

We will look at a few very useful and common routines (reduction,
broadcasts, and Comm_Size) as we do a final example.

You will then be a full-fledged (or maybe fledgling) MPI
programmer.

Final Example: Finding Pi
Our last example will find the value of pi by integrating over the area of a circle of radius
1. We just use the fact that the Area = п R2 and that the equation for such a circle is x2 +
y2 = 1.

We will use the standard (and classic serial) method of finding the area under a curve by
adding up a bunch of rectangular slices:

Final Example: Finding Pi
We can parallelize this very effectively by just having a number of PE’s work on
subsections and add up their final results. With 5 PE’s, we should expect it to take
roughly 1/5 as long to reach an answer.

10 42 3

Final Example: Finding Pi

We could easily do this with the commands we have in hand. However, this is a
good time to introduce a few of the more common and powerful additional MPI
commands: broadcast and reduce.

MPI_Bcast() is very useful when we want to communicate some common data to
every PE. We know we can do this with a loop, as in the previous example, but
with Bcast we not only save some typing and make the code more readable, but
we enable the hardware to use a much more efficient broadcast mode. Picture
the difference between me giving you each this lecture point-to-point, or
“broadcasting” to you all as I am.

We use MPI_Bcast() here to let all of the nodes know how many intervals the
user would like to employ for the approximation. You will find yourself using it
frequently.

Final Example: Finding Pi

We also need to add together each PE’s partial sum. We just did something like this
in the previous example, but once again we find that MPI provides us with a
command that saves typing and is makes more efficient use of the hardware.

MPI_Reduce() allows us to do this loop with one command. However, it can be used
for more than just adding numbers. Other common operations are mins and maxes,
but there are plenty more.

Note that both Bcast and Reduce require all of the PE’s to participate, and require
you to designate one particular PE as the sender or collector. This will often be 0 if it
is the manager PE.

Using any number of available PEs

And we are going to add one last capability that any good MPI application should
have: the ability to run on various numbers of PEs. We have hard-coded the
number of PEs into our previous examples, but think about how much better if
would be if they could run on varying PE counts. After all, scalability is probably
the main reason we are writing MPI codes to begin with.

MPI_Comm_size() gives the basic information we need for the code to adjust
itself.

We use it here so that each PE can calculate the number of slices it is responsible
for. If the user want 1,000,000 slices for good precision, and then runs the code
with mpirun -n 10 we should have each PE work on 100,000 slices.

Finding Pi

#include <mpi.h>
#include <math.h>

int main(int argc, char **argv){

 int n, my_pe_num, numprocs, index;
 float mypi, pi, h, x, start, end;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_pe_num);

 if(my_pe_num == 0){
 printf("How many intervals? ");
 scanf("%d", &n);
 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 mypi = 0;
 h= (float) 2/n; /*Size of each slice*/
 start = (my_pe_num*2/numprocs)-1; /*Slices for this PE*/
 end = ((my_pe_num+1)*2/numprocs)-1;

 for (x = start; x < end; x = x+h)
 mypi = mypi + h * 2* sqrt(1-x*x);

 MPI_Reduce(&mypi, &pi, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);

 if(my_pe_num == 0){
 printf("Pi is approximately %f\n", pi);
 printf("Error is %f\n", pi-3.14159265358979323846);
 }

 MPI_Finalize();

}

References

There are a wide variety of materials available on the Web, some of which are intended to be used as
hardcopy manuals and tutorials. A good starting point for documents is the MPI Forum Docs page:

 http://www.mpi-forum.org/docs/

A good index of MPI man pages can be found at:

 http://www.mpich.org/static/docs/latest/

Two very authoritative and comprehensive books:

• Using MPI: portable parallel programming with the message-passing interface. William Gropp, Ewing
Lusk, Anthony Skjellum. MIT Press

• Using Advanced MPI. Gropp, Hoefler, Thakur and Lusk. MIT Press

Exercises
Exercise 1: Write a code that runs on 8 PEs and does a “circular shift.” This means that every PE sends
some data to its nearest neighbor either “up” (one PE higher) or “down.” To make it circular, PE 7 and PE 0
are treated as neighbors. Make sure that whatever data you send is received.

Exercise 2: Write, using only the routines that we have covered in the first three examples, (MPI_Init,
MPI_Comm_Rank, MPI_Send, MPI_Recv, MPI_Barrier, MPI_Finalize) a program that determines how many
PEs it is running on. It should perform as the following:

mpirun –n 4 exercise
I am running on 4 PEs.

mpirun –n 16 exercise
I am running on 16 PEs.

You would normally obtain this information with the simple MPI_Comm_size() routine. The solution
may not be as simple as it first seems. Remember, make no assumptions about when any given message
may be received.

Exercises Summary
A concise index of all MPI calls, with each parameter described is:

 http://www.mpich.org/static/docs/latest/

Exercise 1: Write a code that runs on 8 PEs and does a “circular shift.”.

Exercise 2: Write (using only MPI_Init, MPI_Comm_Rank, MPI_Send, MPI_Recv, MPI_Barrier, and
MPI_Finalize) a program that determines how many PEs it is running on.

Example session for Exercise 2 (after you’ve edited your_program.c into existence):

% interact –n 8 (if you aren’t already on a compute node)
% mpicc your_program.c or mpif90 your_program.f90
% mpirun -n 4 a.out
I am running on 4 PEs.
%

	Slide 1: Introduction to MPI
	Slide 2: Pre-Introduction: Why Use MPI?
	Slide 3: Introduction
	Slide 4: Basic MPI
	Slide 5: First Example (Starting Processes): Hello World
	Slide 6: Hello World: C Code
	Slide 7: Hello World: Fortran Code
	Slide 8: MPI Routine Guidelines
	Slide 9: MPI_INIT, MPI_FINALIZE and MPI_COMM_RANK
	Slide 10: What’s Happening?
	Slide 11: Keep This Picture
	Slide 12: A Few Interesting Details
	Slide 13: Do all nodes really run the same code?
	Slide 14: Manager and Worker PEs
	Slide 15: An Analogy To Remember
	Slide 16: Communicators
	Slide 17: Compiling
	Slide 18: Running
	Slide 19: It really does just copy and run.
	Slide 20: Fundamental Concept of MPI Do you get it?
	Slide 21: Second Example: Sending and Receiving Messages
	Slide 22: Sending a Message
	Slide 23: Receiving a Message
	Slide 24: Send and Receive C Code
	Slide 25: Send and Receive Fortran Code
	Slide 26: A Peek Behind The Curtain
	Slide 27: Default MPI Messaging
	Slide 28: Send makes a copy
	Slide 29: Why make a copy?
	Slide 30: Message in flight
	Slide 31: Sitting in receive queue
	Slide 32: Received
	Slide 33: Receive Queue
	Slide 34: Non-Blocking Sends and Receives
	Slide 35: Blocking MPI_Send
	Slide 36: Receive Issued
	Slide 37: Non-Blocking Sends and Receives
	Slide 38: Non-Blocking Sends and Receives
	Slide 39: Communication Modes
	Slide 40: But it really is quite simple
	Slide 41: But it really is quite simple
	Slide 42: Third Example: Synchronization
	Slide 43: Third Example: Synchronization
	Slide 44: Synchronization: C Code
	Slide 45: Synchronization: Fortran Code
	Slide 46: Step 1 – Manager, Worker
	Slide 47: Step 2 – Manager, Worker
	Slide 48: Step 3: Print in order…
	Slide 49: Step 3: Print in order…
	Slide 50: Step 3: Print in order…
	Slide 51: Step 3 – Manager, Worker
	Slide 52: Step 4 – Manager, Worker
	Slide 53: Step 5 – Manager, Worker
	Slide 54: Step 1 – Manager, Worker
	Slide 55: Step 2 – Manager, Worker
	Slide 56: Step 3 – Manager, Worker
	Slide 57: Step 4 – Manager, Worker
	Slide 58: Step 5 – Manager, Worker
	Slide 59: Results of “Synchronization”
	Slide 60: A Few Words About MPI_Barrier
	Slide 61: Analysis of “Synchronization”
	Slide 62: Speaking of Debugging...
	Slide 63: Final Example: Beyond the Basics
	Slide 64: Final Example: Finding Pi
	Slide 65: Final Example: Finding Pi
	Slide 66: Final Example: Finding Pi
	Slide 67: Final Example: Finding Pi
	Slide 68: Using any number of available PEs
	Slide 69: Finding Pi
	Slide 70: References
	Slide 71: Exercises
	Slide 72: Exercises Summary

