Singularity images on Bridges

We have installed many of the NVIDIA GPU Cloud (NGC) containers as Singularity images on Bridges. These containers have been optimized for Volta and Pascal architectures by NVIDIA, including rigorous quality assurance.

These containers can all be found on Bridges under the directory /pylon5/containers/ e.g., /pylon5/containers/ngc/caffe. A link to further documentation is included below the table for each package when appropriate. The naming convention for most of these containers includes the year of the release as the first two digits and month as the next two, so release 18.10 was created in October 2018.

See also:

More info: https://docs.nvidia.com/deeplearning/dgx/caffe-release-notes/index.html
Caffe
Available in /pylon5/containers/ngc/caffe
Caffe version Image name Python version Other supported software
0.17.3 caffe_20.03-py3.sif 3.6 OpenMPI 3.1.4
Tensorrt 7.0.0
0.17.1 18.10-py2.simg 2.7 OpenMPI 2.0

TensorRT 5.0.0 RC

0.17.1 18.09-py2.simg 2.7
0.17.1 18.08-py2.simg 2.7 OpenMPI 2.0
0.17.1 18.07-py2.simg 2.7
More info: https://docs.nvidia.com/deeplearning/dgx/caffe2-release-notes/index.html
Caffe2 version 0.81
Available in /pylon5/containers/ngc/caffe2
Image name Python version Other supported software
18.08-py3.simg 3.5 OpenMPI 1.10.3
18.08-py2.simg 2.7
18.07-py3.simg 3.5
18.07-py2.simg 2.7
More info: https://docs.nvidia.com/deeplearning/dgx/cntk-release-notes/index.html
Microsoft Cognitive Toolkit (formerly CNTK) version 2.5
Available in /pylon5/containers/ngc/cntk
Image name Python version Other supported software
18.08.py3.simg

3.6

  • OpenMPI 3.0.0
18.07.py3.simg
More info: https://docs.nvidia.com/deeplearning/digits/index.html
DIGITS
Available in /pylon5/containers/ngc/digits
DIGITS version Image name Python version Other supported software
6.1.1 digits_20.03-tensorflow-py3.sif 3.6 Tensorrt 7.0.0
OpenMPI 3.1.4
NVIDIA CUDA 10.2.89
TensorFlow 1.15.2
6.1.1 digits_20.06-tensorflow-py3.sif 3.6 Tensorrt 7.1.2
OpenMPI 3.1.6
NVIDIA CUDA 11.0.167
TensorFlow 1.15.2
6.1.1 18.10.simg 2.7
  • NVCaffe 0.17.1
  • TensorFlow 1.10.0
  • TensorRT 5.0.0 RC
6.1.1 18.09.simg
Please note that the inferenceserver container is deprecated and will not be updated beyond 18.08.1. Starting with the 18.09 release, the TensorRT Inference Server is available in the tensorrtserver container.  See below.
More info: https://docs.nvidia.com/deeplearning/sdk/inference-release-notes
Inference Server
Available in /pylon5/containers/ngc/inferenceserver
Image name Python version Other supported software
18.08.1-py3.simg  3.5
18.08.1-py2.simg  2.7
18.08-py3.simg  3.5
  • cuBLAS 9.0.425
  • cuDNN 7.2.1
  • NCCL 2.2.13
  • TensorRT 4.0.1
18.08-py2.simg  2.7
MATLAB
Available in /pylon5/containers/mdl
Image name matlab_r2019a.sif
More info: https://docs.nvidia.com/deeplearning/dgx/mxnet-release-notes/index.html
MXNet
Available in /pylon5/containers/ngc/mxnet
MXNET version Image name Python version Other supported software
1.6.0 mxnet_20.03-py3.sif 3.6 Tensorrt 7.0.0
OpenMPI 3.1.4
Horovod 0.19.1, NVIDIA Cuda 11.0.167
1.6.0 mxnet_20.06-py3.sif 3.6 Tensorrt 7.1.2
OPenMPI 3.1.6
Horovod 0.19.1, NVIDIA Cuda 11.0.167
1.3.0 18.10-py3.simg 3.5
  • ONNX exporter 0.1
  • Amazon Labs Sockeye sequence-to-sequence framework 1.18.28
  • TensorRT 5.0.0 RC
  • DALI 0.4 Beta
1.3.0 18.09-py3.simg 3.5
  • ONNX exporter 0.1
  • Amazon Labs Sockeye sequence-to-sequence framework 1.18.28
  • TensorRT 5.0.0 RC
  • DALI 0.2 Beta
1.2.0 18-08.py2.simg 2.7
  • ONNX exporter 0.1
  • Amazon Labs Sockeye sequence-to-sequence framework 1.18.28
  • TensorRT 4.0.1
  • DALI 0.1.2 Beta
1.2.0 18.07-py2.simg 2.7
  • ONNX exporter 0.1
  • Amazon Labs Sockeye sequence-to-sequence framework 1.18.23
  • TensorRT 4.0.1
  • DALI 0.1.1 Beta
More info: https://docs.nvidia.com/deeplearning/dgx/pytorch-release-notes/index.html
PyTorch
Available in /pylon5/containers/ngc/pytorch
PyTorch version Image name Python version Other supported software
1.5.0a0+8f84ded pytorch_20.03-py3.sif 3.6 OpenMPI 3.1.4
Tensorrt 7.0.0
Apex
NVIDIA Cuda 10.2.89
Tensor Core optimized examples:
• ResNeXt101-32x4d
• SE-ResNext
• TransformerXL
• Jasper
• BERT
• Mask R-CNN
• Tacotron 2 and WaveGlow v1.1
• SSD300 v1.1
• Neural Collaborative Filtering (NCF)
• ResNet50 v1.5, GNMT v2
0.41+ 18.10-py3.simg
  • Caffe2
  • APEx
  • DALI 0.4 Beta
  • Tensor Core Optimized Examples:
    • ResNet50 v1.5
    • GNMT v2
  • TensorRT 5.0.0 RC
0.41+ 18.09-py3.simg
  • Caffe2
  • APEx
  • DALI 0.2 Beta
  • Tensor Core Optimized Examples:
    • ResNet50 v1.5
    • GNMT v2
  • TensorRT 5.0.0 RC
More info: https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/index.html
Tensorflow
Available in /pylon5/containers/ngc/tensorflow
Tensorflow version Image name Python version Other supported software
1.15.2 tensorflow_20.03-tf1-py3.sif 3.6 Horovod 0.19.0
OpenMPI 3.1.4
TensorRT 7.0.0
DALI 0.19.0
NVIDIA Cuda 10.2.89
Tensor Core optimized examples: (Included only in 20.03-tf1-py3)
• U-Net Medical
• SSD320 v1.2
• Neural Collaborative Filtering (NCF)
• BERT
• U-Net Industrial Defect Segmentation
• GNMT v2
• ResNet-50 v1.5
2.1.0  tensorflow_20.06-tf2-py3.sif
1.15.2 tensorflow_20.06-tf1-py3.sif
3.6 Horovod 0.19.1 for tf1 and Horovod 0.19.2 for tf2
OpenMPI 3.1.6
TensorRT 7.1.2
DALI 0.22
NVIDIA Cuda 11.0.167
Tensor Core optimized examples: (Included only in 20.06-tf1-py3)
• U-Net Medical
• SSD320 v1.2
• Neural Collaborative Filtering (NCF)
• BERT
• U-Net Industrial Defect Segmentation
• GNMT v2
• ResNet-50 v1.5
JupyterLab 1.2.2 including tensorboard
2.2.0 tensorflow_20.06-tf2-py3.sif
1.13.1 19.11-tf2-py3.simg 3.6
  • NVIDIA CUDA 10.2.89 (cuBLAS 10.2.2.89)
  • NVIDIA cuDNN 7.6.5
  • NVIDIA NCCL 2.5.6
  • Horovod 0.18.1
  • OpenMPI 3.1.4
  • TensorBoard 2.0.1
  • MLNX_OFED
  • TensorRT 6.0.1
  • DALI 0.15.0 Beta
  • Nsight Compute 2019.5.0
  • Nsight Systems 2019.5.2
  • Jupyter Client 5.3.4
  • Jupyter Core 4.6.1
  • Jupyter Notebook 6.0.1
  • JupyterLab 1.0.2
  • JupyterLab Server 1.0.0
  • Jupyter-TensorBoard
tensorflow-19.05-py3.simg 3.5
  •  NVIDIA CUDA 10.1 Update 1 (cuBLAS 10.1 Update 1)
  • NVIDIA cuDNN 7.6.0
  • NVIDIA NCCL 2.4.6
  • Horovod 0.16.1
  • OpenMPI 3.1.3
  • TensorBoard 1.13.1
  • MLNX_OFED 3.4
  • OpenSeq2Seq at commit 6e8835f
  • TensorRT 5.1.5
  • DALI 0.9.1 Beta
  • Nsight Compute 10.1.163
  • Nsight Systems 2019.3.1.94
  • Jupyter Client 5.2.4
  • Jupyter Core 4.4.0
  • JupyterLab 0.35.4
  • JupyterLab Server 0.2.0
tensorflow-19.05-py2.simg 2.7
1.10.0 18.10-py3.simg 3.5 Horovod 0.13.10

OpenMPI 3.0.0

TensorBoard 1.10.0

MLNX_OFED 3.4

OpenSeq2Seq v18.10

TensorRT 5.0.0 RC

DALI 0.4 Beta

18.10-py2.simg 2.7
18.09-py3.simg 3.5 Horovod 0.13.10

OpenMPI 3.0.0

TensorBoard 1.10.0

MLNX_OFED 3.4

OpenSeq2Seq v18.09

TensorRT 5.0.0 RC

DALI 0.2 Beta

18.09-py2.simg 2.7
TensorRT version
Available in /pylon5/containers/ngc/tensorrt
TensorRT version Image name Python version Other supported software
7.0.0 tensorrt_20.03-py3.sif 3.6 OpenMPI 3.1.4
NVIDIA Cuda 10.2.89
7.1.2 tensorrt_20.03-py6.sif 3.6 OpenMPI 3.1.6
NVIDIA Cuda 11.0.167
5.0.0 RC 18.10-py3.simg 3.6
5.0.0 RC 18.10-py2.simg 2.7
5.0.0 RC 18.09-py3.simg 3.6
5.0.0 RC 18.09-p2.simg 2.7
More info: https://docs.nvidia.com/deeplearning/sdk/inference-release-notes/index.html
TensorRT Inference Server
Available in /pylon5/containers/ngc/tensorrtserver
TensorRT Inference Server version Image name Python version Other supported software
1.11.0 tensorrtserver_20.02-py3-clientsdk.sif 3.6 OpenMPI 3.1.4
TensorRT 7.0.0
0.7 Beta 18.10-py3.simg 3.5 OpenMPI 2.0

TensorRT 5.0.0 RC

0.6 Beta 18.09-py3.simg
More info: https://docs.nvidia.com/deeplearning/dgx/theano-release-notes/index.html
Theano version 1.02
Available in /pylon5/containers/ngc/theano
Image name Python version Other supported software
18.08.simg

2.7

18.07.simg
More info: https://docs.nvidia.com/deeplearning/dgx/torch-release-notes/index.html
Torch version 7
Available in /pylon5/containers/ngc/torch
Image name Python version Other supported software
18.08-py2.simg

2.7

18.07-py2.simg