Using OpenACC With CUDA Libraries

John Urbanic
with NVIDIA
Pittsburgh Supercomputing Center
3 Ways to Accelerate Applications

- Libraries
 - “Drop-in” Acceleration
- OpenACC Directives
 - Easily Accelerate Applications
- Programming Languages
 - Maximum Flexibility

CUDA Libraries are interoperable with OpenACC
3 Ways to Accelerate Applications

- Applications
- Libraries
- OpenACC Directives
- Programming Languages

“Drop-in” Acceleration

Easily Accelerate Applications

CUDA Languages are interoperable with OpenACC, too!

Maximum Flexibility
CUDA Libraries Overview
GPU Accelerated Libraries

“Drop-in” Acceleration for Your Applications
CUDA Math Libraries

High performance math routines for your applications:
- cuFFT - Fast Fourier Transforms Library
- cuBLAS - Complete BLAS Library
- cuSPARSE - Sparse Matrix Library
- cuRAND - Random Number Generation (RNG) Library
- NPP - Performance Primitives for Image & Video Processing
- Thrust - Templated C++ Parallel Algorithms & Data Structures
- math.h - C99 floating-point Library

Included in the CUDA Toolkit

Free download @ www.nvidia.com/getcuda

Always more available at NVIDIA Developer site.
How To Use CUDA Libraries With OpenACC
CUDA data in OpenACC for C

You have to allocate data memory on the host and device with alloc/cudaMalloc. `deviceptr()` lets OpenACC know that has happened.

```c
float *a;
...
err = cudaMalloc(&a, sizeof(float)*n);
kernel<<<n/32,32>>>(a,...);
...
incr(a,n);

void incr(float* x, int n){
    #pragma acc parallel loop deviceptr(x)
    for (int i = 0; i < n; ++i)
        x[i] += 1.0f;
}
```
In CUDA Fortran, the `device` attribute tells the compiler that the array is on the device, and that’s all the information it needs.

```fortran
real, allocatable, device :: a(:)
allocate(a(n))
kernel<<<n/32,32>>>(a, ...)
...
call incr(a,n)
...
subroutine incr(x, n)
  real, device :: x(:)
  integer :: n
  !$acc parallel loop
  do i = 1, n
    x(i) = x(i) + 1.0
  enddo
end subroutine
```
deviceptr Data Clause

deviceptr(list) Declares that the pointers in list refer to device pointers that need not be allocated or moved between the host and device for this pointer.

Example:

C
#pragma acc data deviceptr(d_input)

Fortran
$!acc data deviceptr(d_input)
If the data is on the device - say it has been `create()`ed - then `host_data use_device()` allows us to grab that device pointer on the host so that we can pass it along to some CUDA routine elsewhere.

```c
a = (float*)malloc(sizeof(float)*n);
#pragma acc data create(a[0:n])
{
    #pragma acc host_data use_device(a)
    {
        incr(a,n);
    }
}
```

----- separate file with CUDA code -----

```c
__global__ inckernel(float* x, int n){ ... }

void incr(float* x, int n){
    inckernel<<<n/32,n>>>(x,n);
}
```
Example: 1D convolution using CUFFT

Perform convolution in frequency space
1. Use CUFFT to transform input signal and filter kernel into the frequency domain
2. Perform point-wise complex multiply and scale on transformed signal
3. Use CUFFT to transform result back into the time domain

We will perform step 2 using OpenACC

Code highlights follow. Code available with exercises in:
Exercises/OpenACC/Cufft-acc
// Allocate host memory for the signal and filter
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
Complex *h_filter_kernel = (Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);

// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc((void **)&d_signal, mem_size));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));

// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(cudaMalloc((void **)&d_filter_kernel, mem_size));
Source Excerpt
Sharing Device Data (d_signal, d_filter_kernel)

// Transform signal and kernel
error = cufftExecC2C(plan, (cufftComplex *)d_signal, (cufftComplex *)d_signal, CUFFT_FORWARD);
error = cufftExecC2C(plan, (cufftComplex *)d_filter_kernel, (cufftComplex *)d_filter_kernel, CUFFT_FORWARD);

// Multiply the coefficients together and normalize the result
printf("Performing point-wise complex multiply and scale.\n");
complexPointwiseMulAndScale(new_size,(float *restrict)d_signal,(float *restrict)d_filter_kernel);

// Transform signal back
error = cufftExecC2C(plan, (cufftComplex *)d_signal,(cufftComplex *)d_signal, CUFFT_INVERSE);
void complexPointwiseMulAndScale(int n, float *restrict signal,
float *restrict filter_kernel)
{
// Multiply the coefficients together and normalize the result
#pragma acc data deviceptr(signal, filter_kernel)
{
#pragma acc kernels loop independent
for (int i = 0; i < n; i++) {
float ax = signal[2*i];
float ay = signal[2*i+1];
float bx = filter_kernel[2*i];
float by = filter_kernel[2*i+1];
float s = 1.0f / n;
float cx = s * (ax * bx - ay * by);
float cy = s * (ax * by + ay * bx);
signal[2*i] = cx;
signal[2*i+1] = cy;
}
}

Note: The PGI C compiler does not currently support structs in
OpenACC loops, so we cast the Complex* pointers to float*
pointers and use interleaved indexing
Linking CUFFT

- `#include "cufft.h"`
- Compiler command line options:

```
CUDA_PATH = /opt/sgi/13.10.0/linux86-64/2013/cuda/5.0
CCFLAGS = -I$(CUDA_PATH)/include -L$(CUDA_PATH)/lib64
            -lcudart -lcufft
```

- Must use PGI-provided CUDA toolkit paths
- Must link libcudart and libcufft
Result

instr009@nid27635:~/Cufft> aprun -n 1 cufft_acc
Transforming signal cufftExecC2C
Performing point-wise complex multiply and scale.
Transforming signal back cufftExecC2C
Performing Convolution on the host and checking correctness

Signal size: 500000, filter size: 33
Total Device Convolution Time: 6.576960 ms (0.186368 for point-wise convolution)
Test PASSED
Summary

- Use deviceptr data clause to pass pre-allocated device data to OpenACC regions and loops
- Use host_data to get device address for pointers inside acc data regions
- The same techniques shown here can be used to share device data between OpenACC loops and
 - Your custom CUDA C/C++/Fortran/etc. device code
 - Any CUDA Library that uses CUDA device pointers
Appendix

Compelling Cases For Various Libraries
Of Possible Interest To You
cuFFT: Multi-dimensional FFTs

New in CUDA 4.1

- Flexible input & output data layouts for all transform types
 - Similar to the FFTW “Advanced Interface”
 - Eliminates extra data transposes and copies
- API is now thread-safe & callable from multiple host threads
- Restructured documentation to clarify data layouts

\[
F(x) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi\frac{n}{N}}
\]

\[
f(n) = \frac{1}{N} \sum_{n=0}^{N-1} F(x)e^{j2\pi\frac{x}{N}}
\]
FFTs up to 10x Faster than MKL

1D used in audio processing and as a foundation for 2D and 3D FFTs

- Measured on sizes that are exactly powers-of-2
- cuFFT 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Performance may vary based on OS version and motherboard configuration
CUDA 4.1 optimizes 3D transforms

Single Precision All Sizes 2x2x2 to 128x128x128

- Consistently faster than MKL
- >3x faster than 4.0 on average

GFLOPS vs Size (NxNxN)

Performance may vary based on OS version and motherboard configuration

- cuFFT 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
cuBLAS: Dense Linear Algebra on GPUs

- Complete BLAS implementation plus useful extensions
 - Supports all 152 standard routines for single, double, complex, and double complex

- New in CUDA 4.1
 - New batched GEMM API provides >4x speedup over MKL
 - Useful for batches of 100+ small matrices from 4x4 to 128x128
 - 5%-10% performance improvement to large GEMMs
cuBLAS Level 3 Performance

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL

Performance may vary based on OS version and motherboard configuration
ZGEMM Performance vs Intel MKL

Performance may vary based on OS version and motherboard configuration

- cuBLAS 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
cuBLAS Batched GEMM API improves performance on batches of small matrices

- cuBLAS 4.1 on Tesla M2090, ECC on MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Performance may vary based on OS version and motherboard configuration.
cuSPARSE: Sparse linear algebra routines

- Sparse matrix-vector multiplication & triangular solve
 - APIs optimized for iterative methods
- New in 4.1
 - Tri-diagonal solver with speedups up to 10x over Intel MKL
 - ELL-HYB format offers 2x faster matrix-vector multiplication

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
\end{bmatrix} = \alpha \begin{bmatrix}
 1.0 & \cdots & \cdots & \cdots \\
 2.0 & 3.0 & \cdots & \cdots \\
 \cdots & \cdots & 4.0 & \cdots \\
 5.0 & \cdots & 6.0 & 7.0
\end{bmatrix} \begin{bmatrix}
 1.0 \\
 2.0 \\
 3.0 \\
 4.0
\end{bmatrix} + \beta \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
\end{bmatrix}
\]
cuSPARSE is >6x Faster than Intel MKL

Sparse Matrix x Dense Vector Performance

- cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core

*Average speedup over single, double, single complex & double-complex

Performance may vary based on OS version and motherboard configuration
Up to 40x faster with 6 CSR Vectors

cuSPARSE Sparse Matrix x 6 Dense Vectors (csrmm)
Useful for block iterative solver schemes

Performance may vary based on OS version and motherboard configuration

- cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core
Tri-diagonal solver performance vs. MKL

Speedup for Tri-Diagonal solver (gtsv)*

- single
- double
- complex
- double complex

Matrix Size (NxN) vs. Speedup over Intel MKL

- 16384
- 131072
- 1048576
- 2097152
- 4194304

*Parallel GPU implementation does not include pivoting

Performance may vary based on OS version and motherboard configuration

- cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core
cuRAND: Random Number Generation

- Pseudo- and Quasi-RNGs
- Supports several output distributions
- Statistical test results reported in documentation

- New commonly used RNGs in CUDA 4.1
 - MRG32k3a RNG
 - MTGP11213 Mersenne Twister RNG
cuRAND Performance compared to Intel MKL

Double Precision Uniform Distribution

- CURAND XORWOW
- CURAND MRG32k3a
- CURAND MTGP32
- CURAND 32 Bit Sobol
- CURAND 32 Bit Scrambled Sobol
- CURAND 64 Bit Sobol
- MKL MRG32k3a
- MKL 32 Bit Sobol

Double Precision Normal Distribution

- CURAND XORWOW
- CURAND MRG32k3a
- CURAND MTGP32
- CURAND 32 Bit Sobol
- CURAND 32 Bit Scrambled Sobol
- CURAND 64 Bit Sobol
- MKL MRG32k3a
- MKL 32 Bit Sobol

Performance may vary based on OS version and motherboard configuration.