

Neocortex: Introduction to the Cerebras CS-3

Paola A. Buitrago Neocortex, Pl Director, Al and Big Data | Pittsburgh Supercomputing Center

Webinar Agenda

- Neocortex Program Overview
- Cerebras CS-3 technical overview
- Getting access to the CS-3s on the Cerebras Cloud via the Neocortex Program
- Managing your Allocation Cloud portion
- How to get support and help?
- Questions and Answers
- Closing remarks

Context - NSF Solicitation

NSF Solicitation – 19-587

Advanced Computing Systems and Services: Adapting to the Rapid Evolution of Science and Engineering Research

"The intent of this solicitation is to request proposals from organizations to serve as service providers ... to provide advance cyberinfrastructure (CI) capabilities and/or services ... to support the full range of computational- and data-intensive research across all science and engineering (S&E)."

Two categories:

- Category I, Capacity Systems: production computational resources.
- Category II, Innovative Prototypes/Testbeds: innovative forward-looking capabilities deploying novel technologies, architectures, usage modes, etc., and exploring new target applications, methods, and paradigms for S&E discoveries.

The Neocortex Program

Acquisition and operation of *Neocortex* is made possible by the National Science Foundation:

NSF Award OAC-2005597:

Category II: Unlocking Interactive AI Development for Rapidly Evolving Research

Cerebras and HPE delivered *Neocortex*

NSF Solicitation and Award

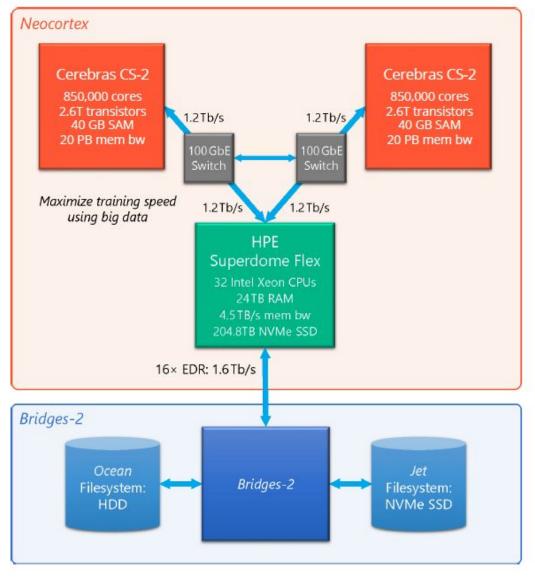
NSF Solicitation - 19-587

Advanced Computing Systems and Services: Adapting to the Rapid Evolution of Science and Engineering Research

Category II, Innovative Prototypes/Testbeds: innovative forward-looking capabilities
 deploying novel technologies, architectures, usage modes, etc., and exploring new target
 applications, methods, and paradigms for S&E discoveries.

Acquisition and operation of Bridges, Bridges-AI, Bridges-2, and **Neocortex** are made possible by the National Science Foundation:

NSF Award OAC-2005597 (\$12.25M awarded to date):



Cerebras and HPE delivered *Neocortex*

Neocortex System Architecture Overview (Original System)

The main AI accelerators are the Cerebras Wafer Scale Engines (WSE-2)

850,000 cores optimized for sparse linear algebra

46,225 mm² silicon

2.6 trillion transistors

40 Gigabytes of on-chip memory

20 PByte/s memory bandwidth

220 Pbit/s fabric bandwidth

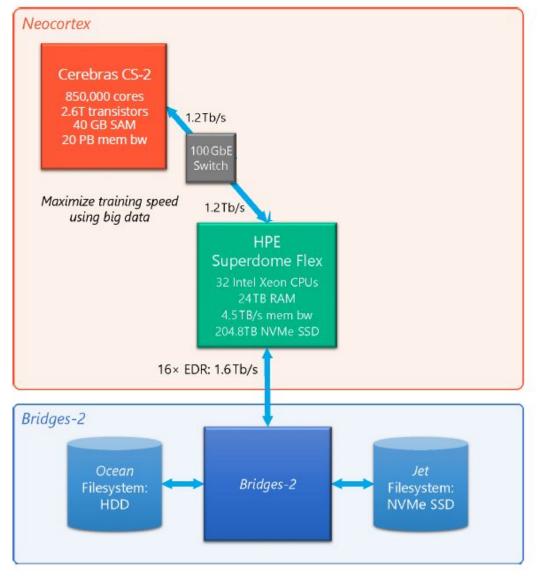
7nm process technology

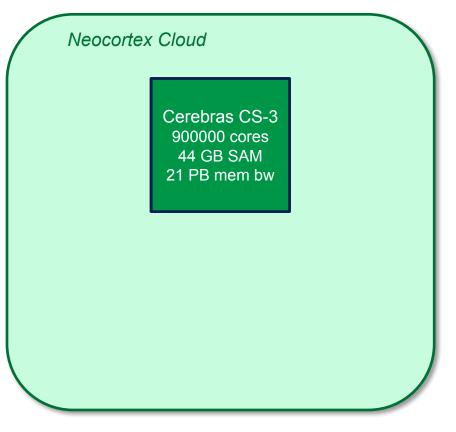
Neocortex System - Developer Cloud Access to CS-3

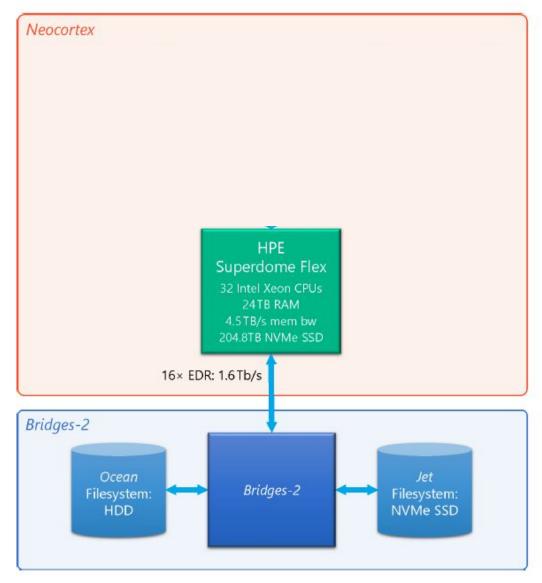
The main AI accelerators are two Cerebras Wafer Scale Engines (WSE-3)

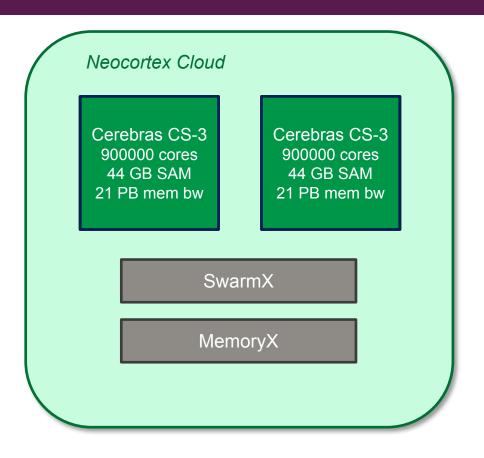
Specifications

- 900,000 compute cores
- 125 PetaFLOPs of Al Performance
- 44 GB on-chip memory
- 12 to 1,200 TB of off-chip model memory
- 21 PB/sec memory bandwidth
- 214 PB/sec core-to-core bandwidth


Available for selected projects.


Reach out to neocortex@psc.edu if you are interested!


Neocortex System Architecture Overview (Hybrid Model)



Neocortex System Architecture Overview (Cloud Model)

Neocortex System – Getting Access

You can access the Neocortex System through the ACCESS and the NAIRR programs.

ACCESS

NAIRR

To Learn More and Participate

Byteboost program	https://www.stonybrook.edu/ookami/ByteBoost.php	
Access program	https://access-ci.org/	
NAIRR pilot	https://nairrpilot.org/	
Neocortex documentation	https://portal.neocortex.psc.edu/docs/index.html	
Contact us with additional questions, inputs, requests > Office hours (Wednesdays, 2 pm ET)	Email: neocortex@psc.edu https://www.psc.edu/resources/neocortex/neocortex-office-hours/	

Webinar Agenda

- Neocortex Program Overview
- Cerebras CS-3 technical overview
- Getting access to the CS-3s on the Cerebras Cloud via the Neocortex Program
- Managing your Allocation Cloud portion
- How to get support and help?
- Questions and Answers
- Closing remarks

Managing your Grant

- No change from current processes discussed in Allocations Neocortex
 Documentation:
 - Accounting information from the CS3 Cloud is sent to the PSC database. You can view and manage it by logging into Neocortex, just like before the move to Cloud.
- If you have an ACCESS grant, you can manage Supplements, Extensions, and Renewals as discussed in https://allocations.access-ci.org/how-to
- If you have a NAIRR grant, you can manage Supplements, Extensions, and users as discussed in https://nairrpilot.org/help/faq

Help and Support

- **No change** from current processes:
 - o Email: <u>neocortex@psc.edu</u>
 - Slack: <u>Neocortex Slack Neocortex Documentation</u>
 - Office hours (Wednesdays, 2 pm ET except holidays): <u>Zoom</u>
 - Calendly on demand specialized 30 min session:
 - ML/AI Office hours
 - SDK Office hours
- Cerebras CS3 documentation:
 - http://training-docs.cerebras.ai/
 - <u>Setup & Installation</u> and the <u>Modelzoo CLI</u> to get up and running with basic commands.
 - Modelzoo Overview to build a mental model of the library and understand where they should begin based on their skill level.
 - <u>The Converter Tool</u> for leveraging pretrained models.
 - Writing a Custom Training Loop for learning how to integrate existing workflows via cstorch.
- Stay tuned for your invitation to our upcoming Tutorial webinar!

Next-Gen Wafer Scale Advantage

The CS-3 consistently delivers 1.5x+ Al acceleration with the same footprint

	WSE-3	WSE-2
Transistor Count	4 trillion	2.6 trillion
Al Compute Speed	1.5-2x	1x
Memory Bandwidth	24 Petabytes/s	20 Petabytes/s
Fabric Bandwidth	245 Petabits/s	220 Petabits/s

Wafer-Scale Cluster

The world's most scalable AI supercomputer

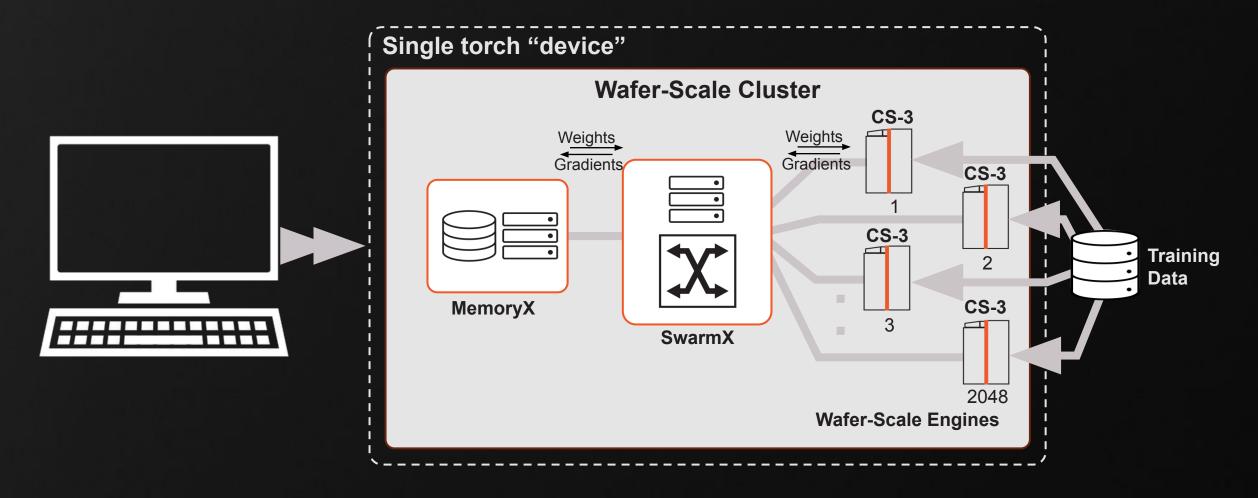
MemoryX

Model weights stored in DDR5 & Flash with CPU running optimizer plus other operations

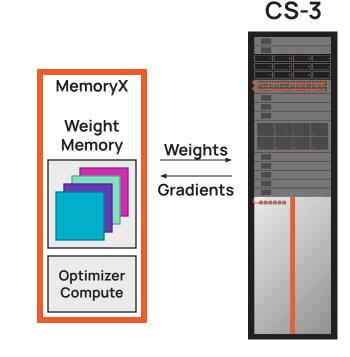
SwarmX

High-performance interconnect fabric broadcasts weights to CS-3 and returns gradients to MemoryX

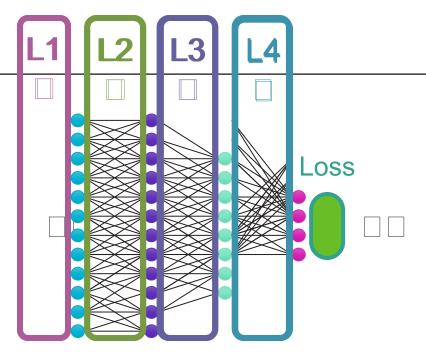
CS-3

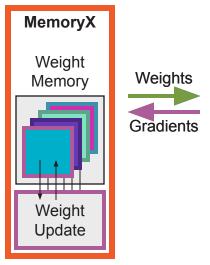

Up to 2048 CS-3 systems compute activations and gradients

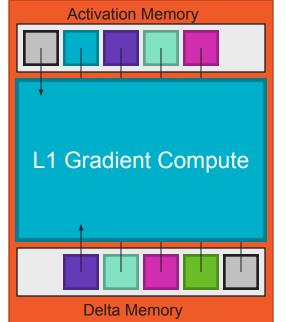
Wafer-Scale Cluster


Cluster exposed as a single device in PyTorch with scaling complexity handled automatically

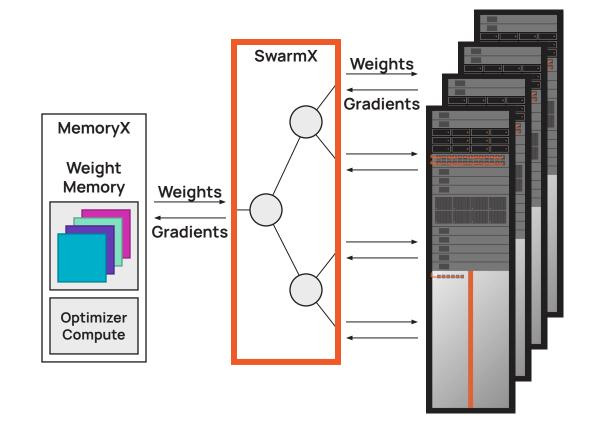
MemoryX External Memory Virtually Unlimited Model Weight Capacity


- Model capacity is not limited by wafer memory
- Weights are streamed onto the wafer
- Weights trigger compute using mesh dataflow
- Weights are never stored on-wafer
- Decouples weights and optimizer compute
- Gradients get streamed out of the wafer
- Weight update occurs inside MemoryX




Memory hierarchy capable of massive models on single device

Weight Streaming In Action



SwarmX Fabric Purpose Built Interconnect for Simple Scaling

- Data-parallel only training across CS-3s
- Weights are broadcast to all CS-3s
- Gradients are reduced on way back
- Multi-system scaling with the same execution model as single system
- Same system architecture
- Same network execution flow
- Same software user interface

Scaling to cluster compute while operating like a single device

CS-3s

Cerebras Modelzoo: Batteries Included

Data Layers & Trainer Models Tools Common Losses Processors Checkpoint Class Transformer **NLP NLP** Training logic Converters Registry **Blocks** Config Checkpoint Position Vision Vision Callbacks Converters **Embeddings** Utils Attention Multimodal Run Utils Multimodal Loggers **Variants** Losses for Eval Config LM, Bert, Validation Harnesses

DPO, CLIP...

Streamlined Setup

- The modelzoo is now locally pip-installable!
- Specifying manual mount and python paths is a thing of the past.
- Simple, three-step setup:
 - git clone https://github.com/Cerebras/modelzoo.git && cd modelzoo
 - pip install -r requirements.txt
 - pip install -e .

The Modelzoo Command-Line Interface

- The modelzoo now comes with an accessible command-line interface (CLI)
- Supported commands include:
 - Model training and evaluation
 - Conversion of model configs and checkpoints
 - Summarizing supported models and breaking down a given model config
 - Data preprocessing and breaking down a given modelzoo DataProcessor
- The modelzoo also has an LLM assistant! It can:
 - Answer questions about Cerebras' hardware, software, and documentation
 - Process natural language instructions to execute modelzoo CLI commands (with permission)
 - All you need is an API key from <u>inference.cerebras.ai</u>

Simplified Job Execution and Scale-Out

```
cszoo fit gpt3_1010b.yaml --num_csx=1
```

No fuss required.

Modelzoo CLI: Converting to Huggingface

```
cszoo checkpoint convert \
--model llama \
--src-fmt cs-auto \
--tgt-fmt hf \
--config pretraining_tutorial/model_config.yaml \
--output-dir pretraining_tutorial/to_hf \
pretraining_tutorial/model/checkpoint_0.mdl
```


Cerebras SDK on CS-3 Wafer-Scale Cluster

- Cerebras SDK programs which run on the simulator can run on a node of the Wafer-Scale Cluster.
- Wrapper scripts are provided to compile and run:

```
cslc → SdkCompiler() wrapper

SdkRuntime host script → SdkLauncher() wrapper
```

- See https://sdk.cerebras.net/appliance-mode for examples and instructions.
- See https://sdk.cerebras.net/csl/code-examples/ for examples of WSE-2 vs. WSE-3 microcode.

Accessing the Cerebras CS-3 Cloud Server

Mei-Yu Wang

Machine Learning Research Scientist,
Pittsburgh Supercomputing Center

Getting Started: Request Access

To begin using the CS-3 cloud, you'll need to provide our team with the following information:

- Full name
- Email address
- Allocation ID
- SSH public key

Submit your request through email to neocortex@psc.edu.

How to Generate Your SSH public key

If you do not already have an SSH key, generate one using the following command (replace with your actual email):

Do not forget your password if

```
ssh-keygen -t rsa -C "your_email@example.com"
```

- For Windows 10/11, You can open **Open Command Prompt** or **PowerShell,** then run the command above. Alternatively, you can use **PuTTY** to generate the key.
- After generation, display the public key:

```
cat $HOME/.ssh/id_*.pub
```

Share only your **public key** with the Neocortex team (email neocortex@psc.edu) while keeping your private key secure.

For more information, please visit the SSH Project webpage.

• Example Output:

you choose to set one!

VPN Setup: Download and Install

Once your access is set up, you will receive:

- Cerebras Cloud Credentials
- VPN Configuration Instructions

VPN Connection¶

- 1. Download the **GlobalProtect** VPN client from: https://access01.vpn.cerebras.net
- 2. Use your **Cerebras-provided VPN credentials** to log in.
- 3. Configure the VPN with **Portal Address**: access01.vpn.cerebras.net
- 4. Connect to the VPN by entering your credential and password.

Connecting to the Cerebras CS-3 Cloud

• After establishing a VPN connection, access the system via SSH:

```
ssh -i $HOME/.ssh/id_KEY <cerebras_username>@cg3-us27.dfw1.cerebrascloud.com Replace <cerebras username>with your assigned username and id KEY with your private key.
```

- No password prompt will appear (authentication via SSH key)
- To verify VPN connectivity:

```
ping cg3-us27.dfw1.cerebrascloud.com
```

Contact us with additional questions, inputs, requests:

Email: neocortex@psc.edu

You can find detailed instructions about accessing Cerebras CS-3 cloud here:

