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Pittsburgh
Supercomputing Center

enabling discovery since 1986
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The Pittsburgh Supercomputing Center (PSC) provides advanced ‘:‘::
research computing capability, education, and expertise to the national -

research community.

Since 1986, PSC has provided university, government, and industry
researchers with access to some of the most powerful systems available
for high-performance computing, enabling discovery across all fields of
science.

OUR AREAS OF EXPERTISE

* high-performance and data-intensive computing

« data management technologies

» software architecture, implementation, and optimization

* enabling ground-breaking science, computer science, and engineering
« user support for all phases of research and education

« STEM outreach in data science, bioinformatics, and coding
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Sergiu Sanielevici Robin Scibek Paola Buitrago Edward Hanna
Pl & Dir. Support Dir. Comms. Dir. Al & Big Data Dir. Systems & Ops.
for Sci. Apps. co-PI co-PI co-PI

Tom Maiden Riaz Khatri Joanne Peca
User Services Mgr. Project Manager Information Security Officer
co-PI
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Bridges-2 Webinars

« A forum for the Bridges-2 community to learn and share

ideas and achievements: Bridges-2 Webinar series | PSC

« Topics and speakers of interest to work that is being

done, or that may be done in future.

« Please suggest future speakers (including from your own

team) and/or topics (including your own)!

Just email: sergiu@psc.edu

© Pittsburgh Supercomputing Center, All Rights Reserved


https://www.psc.edu/events/bridges-2-webinar-series/

Introducing today’s presenters

e Artur Dubrawski, Ph.D. M.Eng, is an Alumni Research
Professor Chair of Computer Science at Carnegie Mellon
University where he directs the Auton Lab, one of the largest
applied machine learning and artificial intelligence teams in
academia. For more than 3 decades he has been working on
the forefront of development of Al serving in technical
leadership roles in industry and leading multiple research
endeavors in academia.

e Mononito Goswami recently graduated with a Ph.D. in
Robotics from Carnegie Mellon University. He is interested in
developing foundational machine learning (ML) techniques for
real-world applications. His research tackles the limitations of
traditional ML approaches, focusing on scenarios with
inaccurate, decentralized, and insufficient data, all in effort to
democratize ML. He led the development of one of the first

open-source foundation models for time series data.
© Pittsburgh Supercomputing Center, All Rights Reserved



Q&A Logistics

« We abide by https://support.access-ci.org/code-of-conduct
« All of us except our speakers will be muted during their

presentation.
« Please type your questions into the Zoom chat.

« After the presentation, our speakers will answer questions live

during the final ~10 minutes of this webinar.

« The video recording and slides of this webinar will be linked

from

https://www.psc.edu/events/bridges-2-webinar-series/time-seri

es-foundation-modeling/ next week.

© Pittsburgh Supercomputing Center, All Rights Reserved
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How to Realize the Potential of Al in Applications?
With a Systematic Approach: The Al Capability Stack

Stack of Atrtificial Intelligence

o Capabilities (Al Stack)
There are only a few general principles on how to

succeed at developing and deploying Al solutions in

o The real-world application of Al is relgtively |
young; recently we can see a broad interest in

it as a potential differentiator

X/
L X4

Machine Learning

% Many experts claim that one cannot fully capitalize on
. e . Massive Data Management
the potential of Artificial Intelligence unless every layer of

the Al Stack is involved (or at least considered) in the
Aarven soluton

Copyright © 2025 Carnegie Mellon University 3




Al Project Cycle Aligns with the Al Stack

% In the Al Stack and the Al Project Cycle, opportunities downstream depend on

the capabilities upstream
Stack of Artificial Intelligence

Capabilities (Al Stack)

Artificial Intelligence Project Cycle

% Sensors & % Engineering . % Immersion & % Qualty of

tion augmentation % Pattern % Predictions % User access “* Costofcare
% EHR % Identifying o detection < Aerts +*  Evaluation and R
%  Insurance targets ** Related data & GUs impact o Supply

Data Assembly & . Modeling & Model .
Data Capture Data Al Readying Deployment Integration

Copyright © 2025 Carnegie Mellon University 4




Al Project Cycle Aligns with the Al Stack

< The capability grid, occuring at the intersection, scopes the potential impact of Al

Massive Data Management
Computing

Data Assembly & . Modeling & Model .
Data Capture Data Al Readying Deployment Integration

Copyright © 2025 Carnegie Mellon University 5




The Capability Grid Scopes Potential Impact of Al

% The capability grid, occuring at the intersection, scopes the potential impact of Al
% It allows us to systematically map the existing capabilities and capability gaps

Autonomy Human Al Interaction

Planning & Acting

Decision Support

Modeling

Machine Learning

|
|
|
:

Massive Data Management

Devices

Computing

Data Assembly & . Modeling &

Data Capture Curation ummarization

Copyright © 2025 Carnegie Mellon University



The Capability Grid Scopes Potential Impact of Al

% Self-limiting reduces the potential impact of academic Al initiatives

Typical
range
of interest

of academic
community

Machine Learning

Massive Data Management

Data Assembly & . Modeling & Model .
Data Capture Data Al Readying Deployment Integration

Copyright © 2025 Carnegie Mellon University 7




Key Limitations of Al in Practice
are due to the DATA, the MODELS ...and HUMANS

Computing

Data Assembly & . Modeling & Model .
Data Capture Data Al Readying Deployment Integration

Copyright © 2025 Carnegie Mellon University 8




Foundation Models for Language and Vision Data Are Prevalent
(unlike other modalities such as Time Series or Tabular Data)

~ First Open Source,
Multi-task Model

Forecasting-only

% Timer
Chronos et 3 (Tsinghua University,
(Amazon, Mar'24) = SS9 % . Feb’24)
MOIRAI . MOMENT
(Salesforce Al Research (CMU, ng'24) _
Asia, Feb’24) v - : Af':'. Aupep
Lag-Llama TimeGPT-1
" (Morgan Stanley, ServiceNow | ~ (Nixtla, Oct’23)

Research ..., Feb’24)

Copyright © 2025 Carnegie Mellon University e 2 e : : X , 9



Introduction

Imagine a Neurologist Reviewing Brain EEG

Long, Multivariate Time Series
Hours of data, 240 Hz, 21 leads (features)

Review Complementary Modalities

Patient had NI e | | | Blood Report
a seizure s St el i Biological covariates
A (age, sex, ...), Haemoglobin  14.0
N‘wfww‘u,,-awf:m\\‘:\‘mvmv N eyt e . ,
QS AT AL i Ty past medical history etc.

RBC Count 5.21

Text Data Tables

Challenge 1: Domain Experts Must Review
Complex Multimodal Information

Copyright © 2025 Carnegie Mellon University



Introduction

Building ML Models that Save Lives is Tedious

-—— = = —
———— —_— -
- —
- -
- ~

Problem Data Preparation Modeling Evaluation
Seizure vs Normal (Preprocessing, (Build, Train, Tune ML (Benchmarking,
Labeling, etc.) Models) Model Selection)

Challenge 2: Building ML Models for a Specific Problem
is Tedious and Repetitive

Copyright © 2025 Carnegie Mellon University



Introduction

Most Data is Not Ready for Machine Learning

Siloed Data

_—

E

Label Data
Seizure vs Normal New Problem
Epileptiform vs Non-epileptiform

Challenge 3: Preparing Data for Machine Learning
is Time Consuming, Cumbersome, and Error Prone

Copyright © 2025 Carnegie Mellon University 12



Introduction

Challenges Limiting Widespread Adoption
of Time Series Machine Learning

B —E

Prepare Data Model Evaluate

Building ML Models is
Tedious & Repetitive

Preparing Data for ML
is Costly, and Error Prone

‘-l
Il

Time Series  Text

Large Volumes of Complex
Multimodal Information

Copyright © 2025 Carnegie Mellon University 13



Introduction

Building ML Models is Tedious — Foundation Models

) Cv. \
|

L, R . I

//L______I\\ (X X J
- Model
) //// \\\\ )

Time Series from e N Multiple Tasks,

various domains MOMENT

—_—_————- e —_a

Foundation Models

Copyright © 2025 Carnegie Mellon University 14



Introduction

Complex Information —
Long Context, Multimodal Foundation Models

@ | N\ V- 1| h Classification
-- ——
| |

Domain Expertise >_> >> Regression

/L ______ AN (XX
-~ Model .
)
Multiple Modalities from T T T T : Mullic/ilrlitcl)pcllzl-r gs‘fts ’uts
various domains MOMENT P

JoLT . .
Infini-Moment

—_—_————- e —_a

Foundation Models

Copyright © 2025 Carnegie Mellon University 15



Introduction

Most Data is Not Ready for Modeling —
Tools to Prepare Data for Machine Learning

. (X X J
¥

Multiple Tasks,

MOMENT %o i Multimodal Outputs

@ A @_ V- 1 — A Classification
. o : — > > : ,
Domain Expertise >_> % :ﬁ: : >> Regression

Multiple Modalities from
various domains

—_—_————- e —_a

Foundation Models

Copyright © 2025 Carnegie Mellon University 16



Introduction

Empower Domain Experts with
Time Series Intelligence at their Fingertips

@ ) ?_ V- | — ) Classification
Domain Expertise — % I%: : > Regression

: . AN : XY
: Prepare .~ Model > Evaluate :
~I=J ¢ Data -/
T == e S IBBTRTRIRRT v il Taske,
Multiple Modalities from it > P

| | .
various domains . MOMENT S:;O)n i Multimodal Outputs
i :
| |
| |
I |

—_—_————- e —_a

Foundation Models



Introduction

Empower Domain Experts with

T Q Intall g C; '

Our hypothesis:

Time series intelligence can be substantially advanced by

1. Building capable foundation models
dedicated to time series data,
2. Improving our understanding of these models, and

3. Addressing practical challenges.

Copyright © 2025 Carnegie Mellon University



Introduction

Part 1: Building Capable Foundation Models

+ Long-Context

---------------------------------------------------------

M@ME NT \ Classification

. >_> Regression

Time Series cee
Foundation Model ) —
+ Multimodal

Understanding

Copyright © 2025 Carnegie Mellon University 19



Introduction

Part 2: Improving Understanding
of Foundation Models

Copyright © 2025 Carnegie Mellon University

---------------------------------------------------------

M@ME NT \ Classification

, . Regression
Time Series s cee
Foundation Model

What are these models learning?
How can we steer these models?

Can these models reason”?

Can they understand basic time series
concepts?

20



Introduction

Part 3: Addressing Practical Challenges

@ ) | % ........ M@MENT ......... ..... \ Classification

] , . Regression
— Prepare Time Series s coe
: Data Foundation Model

Evaluate

Understanding
Foundation Models

Dealing with Siloed, Unlabeled,
or Mislabeled Data

Copyright © 2025 Carnegie Mellon University



Introduction

Time Series

Sequence of numerical observations of a set of features obtained sequentially in
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Copyright © 2025 Carnegie Mellon University

Relations across
features

Temporal relations
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Introduction

Time Series Data are Prevalent and Modeling it is Impactful

= s8

Weather Robotics Economics Healthcare

Temperature Trajectories GDP Electrocardiogram

And many more...

Copyright © 2025 Carnegie Mellon University
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Part 1: Building Capable Time Series Foundation Models

Part 1: Building Capable Foundation Models

+ Long-Context

»

M@ME NT \ Classification

) ) Regression
Time Series g

o000
Foundation Model

+ Multimodal
Understanding

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024, July). MOMENT: A Family of Open Time-series Foundation Models. In International Conference on Machine Learning (pp. 16115-16152). PMLR.

Copyright © 2025 Carnegie Mellon University 24



Part 1: Building Capable Time Series Foundation Models

What is a Time Series Foundation Model?

o Multiple Tasks 4 Multimodality
&) chatGPT )
/ Fewer Labels / Cost Efficiency

Classification
<>
Anomaly Detection -

Imputation

Building block for diverse Effective out-of-the-box Tunable using in-distribution
time series analysis tasks (Zero-shot performance) and task-specific data

Copyright © 2025 Carnegie Mellon University 25



Part 1: Building Capable Time Series Foundation Models

Missing Ingredients of a Time Series Foundation Model

as of February 2024

Data

LLM The Pile

_ . Time Series Pile
Time Series

Foundation
Model

Roadblocks No Large, Cohesive,
Public Dataset

Copyright © 2025 Carnegie Mellon University

4 .
Modeling

(Model & Training Objective)

Decoder-only Transformer &
Next token Prediction

MOMENT

nnnnnnnnn

[T 1

rrrrrrrrrrrr

Time series
characteristics

This Talk

Benchmarking

Massive Multitask
Language Understanding

=== MOMENT == GPT4TS -+ TimesNet

Task specific
benchmarks, unfit to
evaluate FMs

26



Part 1: Building Capable Time Series Foundation Models

Design Space of a Time Series Foundation Model

i Architecture
i What architecture
| should we use?

T

e I

i Inputs :““'\ e

' How should we feed Foundation

i time series? i /,Model

_______________________ O S,

i Objective |
' What should the model |
i predict? i

Copyright © 2025 Carnegie Mellon University
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Part 1: Building Capable Time Series Foundation Models

What Type of Architecture Should We Use?

| Architecture i Intuition
| |
i Encoder-only | Primary choice for LLMs
|
| Transformer | ,
e Leverage advances in LLMs
|
Foundation
Mode L P P

\AA AN

-
-
-
-
-
-

Copyright © 2025 Carnegie Mellon University 28



Part 1: Building Capable Time Series Foundation Models

How Should We Feed Time Series Data?

Intuition

Masking patches (vs.
timesteps) is efficient & it
forces the model to learn

| Inputs i_ - =s good representations
| L . . | v
' Disjoint time series | Foundation G W
'subsequences (patches)i Model LA i '”;\,r

i' \ h“ éiﬂ: Ay EE\ yun ii

________________________________________

Copyright © 2025 Carnegie Mellon University



Part 1: Building Capable Time Series Foundation Models

What Should the Model Predict?

Objective

|
|
|
|
Masked Time Series i

Reconstruction |

Copyright © 2025 Carnegie Mellon University

Intuition

All tasks are instances of
masked time series
reconstruction

—— e — — — — — — — — — —— —

Imputation Forecasting

30



Part 1: Building Capable Time Series Foundation Models

One Model, Multiple Tasks, Datasets & Domains

{_ MOMENT } On par with statistical baselines

)
e -

Large-scale pre-training enables

Frozen MOMENT to accelerate the development
of good time series ML models
L MOMENT Competitive with state-of-the-art
N ,
'

Fine-tuning ~1% parameters
(linear probing)

Copyright © 2025 Carnegie Mellon University 31



Part 1: Building Capable Time Series Foundation Models

Part 1: Building Capable Foundation Models

+ Long-Context

| \ § --------------------------------------------------------- E\ ClaSSification
S MOMENT ; ,

] ] Regression
Time Series i >’

. . o000
Foundation Model ) —

+ Multimodal
Understanding

Zukowska, N., Goswami, M., Wiliriski, M., Potosnak, W., & Dubrawski, A. Towards Long-Context Time Series Foundation Models With A Handful Of Additional Parameters. In NeurlPS 2024 Workshop on Fine-Tuning in
Modern Machine Learning: Principles and Scalability.

Copyright © 2025 Carnegie Mellon University



Part 1: Building Capable Time Series Foundation Models

Long Context Time Series Foundation Models

Many channels

3o
e
>

Long Time

Long Context models should be
able to model both long
and multivariate time series

Copyright © 2025 Carnegie Mellon University
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Part 1: Building Capable Time Series Foundation Models

Focus on Multivariate Time Series Foundation Models

Many channels

Long Context models should be
able to model both long
and multivariate time series

= Multivariate models can be easily
extended to model long time series

Copyright © 2025 Carnegie Mellon University

€ The Ideal Approach
Minimal changes to the architecture
and training procedure

@ Key Challenge
Standard transformers can only model a
univariate sequences of limited lengths

QNaive Solution
Training with a larger context length
(# of input patches) does not scale due
quadratic complexity of attention

34



Part 1: Building Capable Time Series Foundation Models

Key ldea: Introduce Memory in Transformers

Recurrent Neural Networks Stateless Transformers
RNN(:L‘t, ht—l) Os = attention(Xs)

Update hidden state as additional Process a sequence of tokens,
tokens are processed but don’t maintain state

Infini-Attention: Recurrent Attention Layer

Attend to sequence of tokens in context,
and in the memory

Munkhdalai, T., Faruqui, M., & Gopal, S. (2024). Leave no context behind: Efficient infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 101.

Copyright © 2025 Carnegie Mellon University
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Part 1: Building Capable Time Series Foundation Models

Infini-Attention: Recurrent Attention Layer

Learnable parameter, balances
local and global information

T8 1-3

Global Multi- , . Local
Channel Context [ Compressive Memory } ,%[ Scaled Dot Product Attention } Context

Step 1: Aggregate cross-channel
information in memory

Step 2: Retrieve cross-channel
information from memory

Channels

Copyright © 2025 Carnegie Mellon University
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Part 1: Building Capable Time Series Foundation Models

Infini-MOMENT has Nice Properties

Minimal changes to the existing modeling and training paradigm,
Complexity is linear in the number of channels,
Multi-channel attention is invariant to the order of channels,

Copyright © 2025 Carnegie Mellon University

Only 1 trainable parameter per attention layer — low memory footprint.

37



Part 1: Building Capable Time Series Foundation Models

Infini-MOMENT Outperforms MOMENT on some
Multivariate Tasks

MSE (]) on Multivariate Forecasting Datasets

Exchange ETTh1 ETTmA1
MOMENT 0.240 0.435 0.340
INfini-MOMENT 0.232 0.416 0.333

INfini-MOMENT outperforms MOMENT with only 20
additional parameters

" e Fine-tuning beta parameters improves performance,
e Multivariate modeling doesn’t always improve performance.

Copyright © 2025 Carnegie Mellon University 38



Part 1: Building Capable Time Series Foundation Models

Part 1: Building Capable Foundation Models

+ Long-Context
). M@MENT \ Classification

, . Regression
Time Series >

o000
Foundation Model

) Q&A

+ Multimodal
Understanding

Cai, Y., Goswami, M., Choudhry, A., Srinivasan, A., & Dubrawski, A. (2023). Jolt: Jointly learned representations of language and time-series. In Deep Generative Models for Health Workshop NeurlPS 2023.

Cai, V., Srinivasan, A., Goswami, M., Choudhry, A., & Dubrawski, A. (2024, March). JoLT: jointly learned representations of language and time-series for clinical time-series interpretation (student abstract). AAAI International
Conference on Artificial Intelligence (Vol. 38, No. 21, pp. 23447-23448).

Copyright © 2025 Carnegie Mellon University 39



Part 1: Building Capable Time Series Foundation Models

Multimodal Time Series Foundation Models

A A

Time Series Text
JoLT

Multiple Modalities Multiple Tasks,
from different domains Y, Y, Multimodal Outputs

Focus on time series & text-conditioned text generation

Copyright © 2025 Carnegie Mellon University 40



Part 1: Building Capable Time Series Foundation Models

Generating Text Conditioned on Time Series
Is a Useful Task

__________________________________________________________________________________________

|
bundle branch block
Electrocardiogram (ECG) Clinician Interpretation

D @ &

i Time consuming ~ Cumbersome  Error prone

_________________________________________________________________________________________

Existing ML Solutions

QHand—designed rule-based Q Model time series as an image or graph

Copyright © 2025 Carnegie Mellon University

_
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Part 1: Building Capable Time Series Foundation Models

Generating Text Conditioned on Time Series
Is a Useful Task

[
Key Challenge
How can we scalably generate expressive text
by directly modeling time series?

Copyright © 2025 Carnegie Mellon University

42



Part 1: Building Capable Time Series Foundation Models

JoLT: Align Pre-trained Unimodal Foundation Models

Text
0 Instruction
L e o 8]
Time Series A O-Former

Embeddings

Querying Transformer

e Sinus rhythm
L LERCIRICIE }—» left bundlle

Model branch block

X Soft Prompts

(Learns to map Time Series Embeddings to

LLM Soft Prompts)

-

e [everage frozen pre-trained models, so little training needed,
e Enables conditioning by text (instructions, questions).

means Frozen

Wenliang, D., et al. "InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning [C]." Advances in Neural Information Processing Systems 36 (2023).

43



Part 1: Building Capable Time Series Foundation Models

New Time Series to Text Generation Tasks

Hr' N
iw/; .v*\._.v-? VM\’Jj‘”}
=t s £

] :
t t t 1 t 1 t
[ ' [

{,J@,ﬁ,;u;jfvg g

PTB-XL ECG Arrhythmia
Classification Dataset

Paired ECG time series
& clinical interpretation

ECG Clinical Summarization (New Task)

sinus rhythm position type normal left bundle branch block

left hypertrophy possible 4.46 unconfirmed report
g J

Not natural language!
ECG statements in German, translated to English

ECG Question Answering (New Task)

Question: Which of these 3 diagnostic classes does this
ECG belong to?

Options: (a) Normal ECG, (b) ST/T Change, (c) Hypertrophy
Answer: (a) Normal ECG

Wagner, P, Strodthoff, N., Bousseljot, R. D., Kreiseler, D., Lunze, F. I., Samek, W., & Schaeffter, T. (2020). PTB-XL, a large publicly available electrocardiography dataset. Scientific data, 7(1), 1-15.

Copyright © 2025 Carnegie Mellon University
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Part 1: Building Capable Time Series Foundation Models

Time Series Should be Modeled Explicitly

ECG Clinical Summarization (New Task)

3"”*”*”***ifjjjfjjijijjﬁj sinus rhythm position type normal left bundlle branch block left Ground Truth
il iRt At hypertrophy possible 4.46 unconfirmed report

—— e

| j sinus rhythm left type left bundle branch block left JoLT (Ours)
hypertrophy possible 4.46 unconfirmed report

BLIP-2

........

BLIP-2 takes an image of ECG as input -/‘

e Time series should be modeled explicitly.
e \We are limited by the availability of paired data and not technology

Copyright © 2025 Carnegie Mellon University 45



Part 2: Understanding Time Series Foundation Models

Part 2: Improving Understanding of Foundation

Models

Copyright © 2025 Carnegie Mellon University

---------------------------------------------------------

M@ME NT \ Classification

, . Regression
Time Series s cee
Foundation Model

What are these models learning?
Can we steer these models?

Can these models reason?

Can they understand basic time series
concepts?

46



Part 2: Understanding Time Series Foundation Models

1. What are These Models Learning? Representational Similarity

23 . MSE (|) of Fine-Tuned Vanilla & Pruned Models
21 High on Forecasting Datasets
19 Similarity ETTm2 liness  Weather
17 A
15 Vanilla |  0.171 3.260 0.153
o 13
11 Pruned 0.173 2.981 0.152
1
9 Marginal reduction in performance,
g v but 50% faster inference time
3 Low ) .
Similarit = TSFMs learn redundant representations.
1 imiiarity Reducing redundancy improves speed, while
1 357 911131517192123 maintaining accuracy.
Layer
MOMENT pairwise similarity of hidden activations, o o | ' |
measured using Centered Kernel Alignment e 1 Tme S Fourdaton Modole 1 NeuroS 24 Workshon on Fourdton Model mtaentions

Copyright © 2025 Carnegie Mellon University 47



Part 2: Understanding Time Series Foundation Models

1. What are These Models Learning? Output Embeddings

Embeddings of
penultimate layer
projected using
PCA

Example
Time Series

Data Generating
Process

Copyright © 2025 Carnegie Mellon University

Frequency

“TSFMs capture the language of
time series.

Low C s

e o [
M\A\r‘ﬁ K‘\ ‘\\M\ i m“’w““/ ‘W

“\1 W” W‘HH‘\

y =sin(2cnx) +e€ y= x¢ +sin(32nx) + €
C = [1,32] ¢ = [1/g,8]

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024, July). MOMENT: A Family of Open
Time-series Foundation Models. In International Conference on Machine Learning (pp. 16115-16152). PMLR.

48



Part 2: Understanding Time Series Foundation Models

1. What are These Models Learning? All Embeddings

Frequency @ igh Frequency
=— T High o® o
Linear separability P Separability ®
between concepts ™ e\
across layers & % e
patches @ Low
: . ‘ Separability
— lLayers — Embeddings at
s layer | & patch p
Example (\ \WP\ W
Time Series - i MH 1 |
(V] ~ Concepts are learned in the

High vs Low Frequency specific parts of the model.
Wilinski, M., Goswami, M., Zukowska, N., Potosnak, W., & Dubrawski, A. (2024). Exploring Representations and
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Part 2: Understanding Time Series Foundation Models

2. Can we Steer These Models?

Frequency _ @ High Frequency
0,0 ¢
L Q
.. (%%?9

— LlLayers Embeddings at
High Low layer | & patch p
Separability Separability
= TSFMs predictions can be steered, during
inference, without retraining.

Marks et al. "The geometry of truth: Emergent linear structure in large language model representations of true/false datasets." arXiv preprint arXiv:2310.06824 (2023).

Steered prediction

Add Trend

Combination of
Periodicity &
Trend

Wilinski, M., Goswami, M., Zukowska, N., Potosnak, W., & Dubrawski, A. (2024). Exploring Representations and Interventions in Time Series Foundation Models. In NeurlPS’24 Workshop on Foundation Model Interventions.
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Part 2: Understanding Time Series Foundation Models

Many Practical Applications of Steering

Normal to Abnormal Heartbeat

Introduce Q Generate
Inductive Bias Synthetic Data

. , = TSFMs predictions can be steered during inference,
These images are for . . . g
ilustrative purposes only! improving performance without retraining.

Copyright © 2025 Carnegie Mellon University
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Part 2: Understanding Time Series Foundation Models

3. Do These Models Reason?

Do Time Series Foundation Models simply memorize training patterns?
Or do they reason about patterns?
Compositional Reasoning

Learn simple concepts during training.
Combine learned concepts during inference.

WVV\AMALMMWM WAL NN

Simple time series Complex time series Simple time series with  Complex time series with
(single-frequency) (multi-frequency) seasonality or trend seasonality and trend
Training Set Test Set Training Set Test Set

Potosnak, W., Challu, C*., Goswami, M*., Olivares, K. G., Wilinski, M., Zukowska, N., & Dubrawski, A. (2025). Investigating Compositional Reasoning in Time Series Foundation Models. In NeurlPS’24 Workshop on Time
Series in the Age of Large Models.
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Part 2: Understanding Time Series Foundation Models

3. Do These Models Reason?

Do Time Series Foundation Models simply memorize training patterns?
Or do they reason about patterns?
Compositional Reasoning

Learn simple concepts during training.
Combine learned concepts during inference.

Very simple test!

But 9 / 16 compared methods (e.g. Standard Transformer, LSTM,
Linear Models) showed no signs of compositional reasoning!

Copyright © 2025 Carnegie Mellon University
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Part 2: Understanding Time Series Foundation Models

3. Do These Models Reason?

Train on simple time series Test on complex time series
with seasonality or trend with seasonality and trend
20 _20/\ : 3IiIBEATS
- = N\i&/\\ A{ e Models never trained
-2 TN on negative trends!
! 200 400 600 800 1000 26 1050 1100 1150 1200

t t

e Patched-transformers (e.g. T5) and MLP-based (e.g NHITs)
showed sparks of compositional reasoning
e Input patching unlocks reasoning in Transformer-based TSFMs

Copyright © 2025 Carnegie Mellon University
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Part 2: Understanding Time Series Foundation Models

4. Can these Models Understand Basic Concepts?

LLMs are used for Time Series Tasks TimeSeriesExam tests LLMs on 5 core understanding categories

( e Question: The given time series is
Prompt Samiples Time Series 1 composed of several concatenated
i "and fell asleep” ' . patterns. Is this time series stationary?
"The dog jumped up on the bed" "and bit my leg" 0.4 ‘\ I e Options: (A) No, (B) Yes
LLM f ﬂ\‘ ﬂ \“ I e Example: <Randomly generated
"631, 656, 650, .. 487, 485, 487" "479, ..., 371, 364" 0.2 }\‘ ‘. N (| /“‘ example>

"492, .., 499, 501" M /W I b }\\ |

\ N \
| | \‘ N W ARLAN <Definition of stationarity>
i [ |
\

/ | \ 5 > 5 5
t \ -0.2 \ ( v \ Vo ‘} L [ | e (Optional) Hint: First identify different
/\/_/\j\/\/\/\{ﬁ \/ [/ \J U U parts of the time series. Then check if

T B B % % 0 5o each part is stationary.
o Model Response: ... the first part of the

given time series appears to have a
relatively constant mean and variance.
Therefore, the correct answer is: B) Yes

5 ‘ e (Optional) Relevant Concepts:

- i Category: Pattern Recognition
Zero ShOt forecastlng Subcategory: Stationarity Detection
\S

Procedurally generated Refined using ltem

700 questions using templates Response Theory

Gruver, N., Finzi, M., Qiu, S., & Wilson, A. G. (2023). Large language models are zero-shot time series forecasters. Advances in Neural Information Processing Systems, 36, 19622-19635.
Cai, Y., Choudhry, A., Goswami, M., & Dubrawski, A. TimeSeriesExam: A Time Series Understanding Exam. In NeurlPS Workshop on Time Series in the Age of Large Models.
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Part 2: Understanding Time Series Foundation Models

Randomly Generated Questions are Improved using
Item Response Theory

Each question can maximally distinguish the abilities of
candidate LLMs

2 parameter logistic model: ]P)(,rz] _

Probability that LLM j responds
to question / correctly

Question /’s difficulty and discrimination ability LLM /’s ability

. . . Parameters fit usin uestions with low difficult
1-3 rounds of iterative  All candidate LLMSs take 9 Q Y y
: MLE based on LLM & discrimination are dropped
improvement the exam
responses
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Part 2: Understanding Time Series Foundation Models

Insights into LLMs

Noise
Understanding

Anomaly
Detection

Pattern
Recognition
Similarity
Analysis
Causality
Analysis
= GPT-40 (image) == = Gemini-1.5-Pro (text) Phi-3.5-vision

== = GPT-40 (text) = MiniCPM-V-2_6 Phi-3.5-mini-instruct

= Gemini-1.5-Pro (image)

Copyright © 2025 Carnegie Mellon University

Insights

e || Ms understand basic time series

concepts,
e [f using LLMSs, tokenizing time series
as images is better than text.

= Benchmarks can be generated at scale
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Part 2: Understanding Time Series Foundation Models

Understanding of Foundation Models
Can Help Improve their Performance

Questions

What are these
models learning?

Can we steer
these models?

Can these
models reason?

Can they understand basic

time series concepts”?

Actionable Insight

Redundant representations
can be pruned to improve efficiency

Steering TSFM predictions can
imbue missing domain knowledge

Input patching can unlock
compositional reasoning

Targeted model interrogation can reveal
capability gaps

Copyright © 2025 Carnegie Mellon University
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Conclusion

Research Impact: Empower Domain Experts with Time
Series Intelligence on their Fingertips

Before Now Near Future
Different models for different One model, minimal LLM agent uses TSFMs &
tasks, trained from scratch task-specific adaptation learns from feedback

£HE MOMENT (o

Better Human-Al Collaboration A

Lower Human Effort v
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Conclusion

Empower Domain Experts with
Time Series Intelligence at their Fingertips

. (X X J
¥

Multiple Tasks,

MOMENT %o i Multimodal Outputs

@ ) ?_ V- | — ) Classification
Domain Expertise — % IS%: : > Regression

Multiple Modalities from
different domains

—_—_————- e —_a

Foundation Models
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Conclusion

Empower Domain Experts with
Time Series Intelligence at their Fingertips

Core Assumption
Domain Experts have time and are familiar with Machine Learning

Copyright © 2025 Carnegie Mellon University
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Conclusion

LLM Agents can Automate ML Workflows
Using Our Tools

Q
| Qooff o, :
@ A ; ?‘ V- 1 — g A Classification
: o . A ——> — [ )
Domain Expertise ; é }ﬁ| i Regression
>_> ! >-> o000
Ty ’
Multiple Modalities from : Mul\I{tlil#Tl;tl)p(;eangiTS’uts
different domains MOMENT S&"O)p | P
|
|
|
|

—_—_————- e —_a

Foundation Models
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Conclusion

Al Agents are Not Ready Yet for Practical Use

Machine Learning Agents

e Research Agent
(Huang, 2024)

e AIDE (Jiang, 2025)
e OpenHands (Wang, 2024)

&“ = B

| |
' |
' |
: Labeling  Hyper Parameter Logging l
: Tuning |
| |
: |
| |
I

Debugging Research Code

_______________________/

Skills of a Seasoned ML Engineers
Copyright © 2025 Carnegie Mellon University

~--kaggle

Minimal ambiguity
Well structured input/output
Few time series tasks

. TimeSeriesGym

B Building Time Series ML Engineering agents
will require thinking beyond Kaggle

Cai, Y., Li, X., Goswami, M., Wilinski, M., Welter, G., & Dubrawski, A. (2025). TimeSeriesGym: A Scalable
Benchmark for (Time Series) Machine Learning Engineering Agents. arXiv preprint arXiv:2505.13291.
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Conclusion

Research on MOMENT Has Been Impactful

Datasets

«

Pre-train & Evaluate Multi-task

Time Series Pile Time Series Foundation Models

Evaluate LLMs (and Agents)

TimeSeriesExam-1 on Time Series Understanding

Copyright © 2025 Carnegie Mellon University

10K+ downloads
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Conclusion

Research on MOMENT Has Been Impactful

®
ko

Models @ .
. e &t

First Open Source, Multi-task Model

downloads

Stellar Flare Forecasting Machine Fault Diagnosis Human Activity Recognition
(Zhu et la., 2025) (Eldele et la., 2025) (Chen et al., 2025)

500+ stars

Attracted $2M+ in
government &

industrial funding Classification Anomaly Detection  Building Predictive Analytics
(Feofanov et la., 2025) (Liu et la., 2025) (Mulayim et la., 2024;
Dumitru et la., 2024)

(/

3
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Conclusion

Research on MOMENT Has Been Impactfu

Skl -
Blood in arteries snd veins

A Electrodes e A
Tririveet 5 alued ?s& 2lp
AR
Briain
Electroencephalogram Photoplethysmography Intracranial Pressure
(EEG) (Yuan et al., 2025) (PPG) (Chen et al., 2024) (|CP) (Leeuwen et al., 2025)
MOMENT PaPaGei
(Generic) (PPG-specific; Pillai, 2024)
Smoker Smoker
Pregnancy Pregnancy L . . . e
0.82_0** Mortality 0.82 X Mortality © MOMENT without substantial domain-specific
ertension : H rtension 0o 0 0
rpenienseny T Ny training performs well against custom-built
ol o o domain-specific models.
Apnea 0.6 Apnea 0.6
'Sérousal 06— 5érousal
Mood valence Mood valence

Lower Area — Better
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Conclusion

It Takes a Village to Build a Foundation Model

Copyright © 2025 Carnegie Mellon University

67



Running MOMENT on Bridges-2

e It is straightforward to run MOMENT on Bridges-2 with

pre-configured environment!

e Scan the QR code or click on the link for documentation

showing the steps to run through all the tutorials in the

https://www.psc.edu/resources/bridges-

2/user-quide/#moment MOMENT Github repo. Examples include:
MOMENT finetuning Anomaly Detection
s p—— Classification/PTBXL dataset classification
e Forecasting
' Imputation

Tf‘i Representation learning
7 Model Finetuning
1 H100 (bf16) 4 V100 (fp16)

GPU configuration

Training Throughput (samples/sec)




Conclusion

Thank You!

Time series intelligence can be substantially advanced by

Classification

) -

1 Ser >> Regression
Ime Series Evaluate oo

Foundation Model )

Understanding
Foundation Models

Addressing Practical Challenges
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