

Bridges-2 Webinar Welcoming the NVIDIA AI Enterprise Suite to Bridges-2

Jon Coons, NVIDIA Julian Uran, PSC

June 18, 2025

Pittsburgh Supercomputing Center

enabling discovery since 1986

The **Pittsburgh Supercomputing Center (PSC)** provides advanced research computing capability, education, and expertise to the national research community.

Since 1986, PSC has provided university, government, and industry researchers with access to some of the most powerful systems available for high-performance computing, enabling discovery across all fields of science.

OUR AREAS OF EXPERTISE

- high-performance and data-intensive computing
- data management technologies
- software architecture, implementation, and optimization
- enabling ground-breaking science, computer science, and engineering
- user support for all phases of research and education
- STEM outreach in data science, bioinformatics, and coding

Bridges-2 Leadership Team

Sergiu Sanielevici PI & Dir. Support for Sci. Apps.

Robin Scibek Dir. Comms. co-Pl

Paola Buitrago Dir. Al & Big Data co-Pl

Edward Hanna Dir. Systems & Ops. co-Pl

Tom Maiden User Services Mgr. co-Pl

Riaz Khatri Project Manager

Joanne Peca Information Security Officer

Bridges-2 Webinars

- A forum for the Bridges-2 community to learn and share ideas and achievements: <u>Bridges-2 Webinar series | PSC</u>
- Topics and speakers of interest to work that is being done, or that may be done in future.
- Please suggest future speakers (including from your own team) and/or topics (including your own)!

Just email: sergiu@psc.edu

Introducing today's presenters

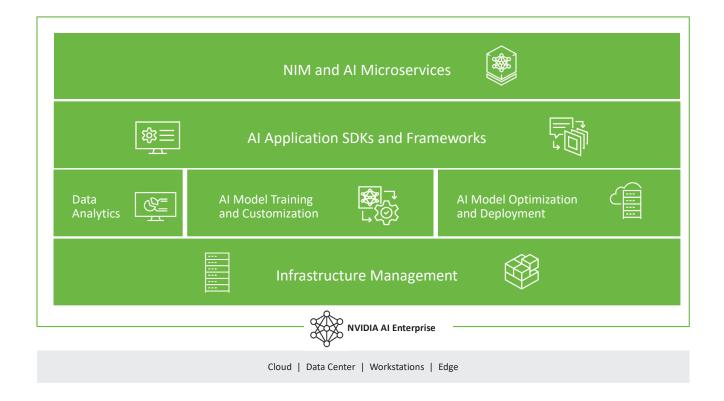
Jon Coons is a key member of the NVIDIA AI Enterprise software team, serving as a Senior AI Product Specialist for Generative AI and AI Inferencing for the Americas. Prior to NVIDIA, Jon was an integral part of the AI Global Black Belt team for Microsoft Azure, working with primarily Fortune 500 Enterprises on Generative AI, Vision/Video Analytics and Edge AI initiatives. Bridging the divide of technical acumen and foundational business logic, Jon leverages his diverse background to bring a unique and valuable perspective to the Generative AI equation.

Julian Uran is a Senior Systems Software Engineer at the Pittsburgh Supercomputing Center, where he works on the AI and Big Data team. With a master's degree in systems and computer engineering, Julian is a go-to expert for all things tech—software development, advanced troubleshooting, DevOps, virtualization, system tuning, and hardening. He plays a key role in supporting cutting-edge research by helping users maximize the performance of HPC systems like Bridges-2. At this event, Julian will demonstrate how to run workflows with NVIDIA NIM containers on Bridges-2's H100 GPUs, making AI at scale more accessible to the research community.

Q&A Logistics

- We abide by https://support.access-ci.org/code-of-conduct
- All of us except our speakers will be muted during their presentation.
- Please type your questions into the Zoom chat.
- After the presentation, our speakers will answer questions live during the final ~10 minutes of this webinar.
- The video recording of this webinar and the slides will be linked from

https://www.psc.edu/events/bridges-2-webinar-series/nvidia-aienterprise-suite/ next week.



NVIDIA AI Enterprise Overview – PSC

Jon Coons, Senior Product Specialist

NVAIE | Generative AI & Inference

NVIDIA AI Enterprise

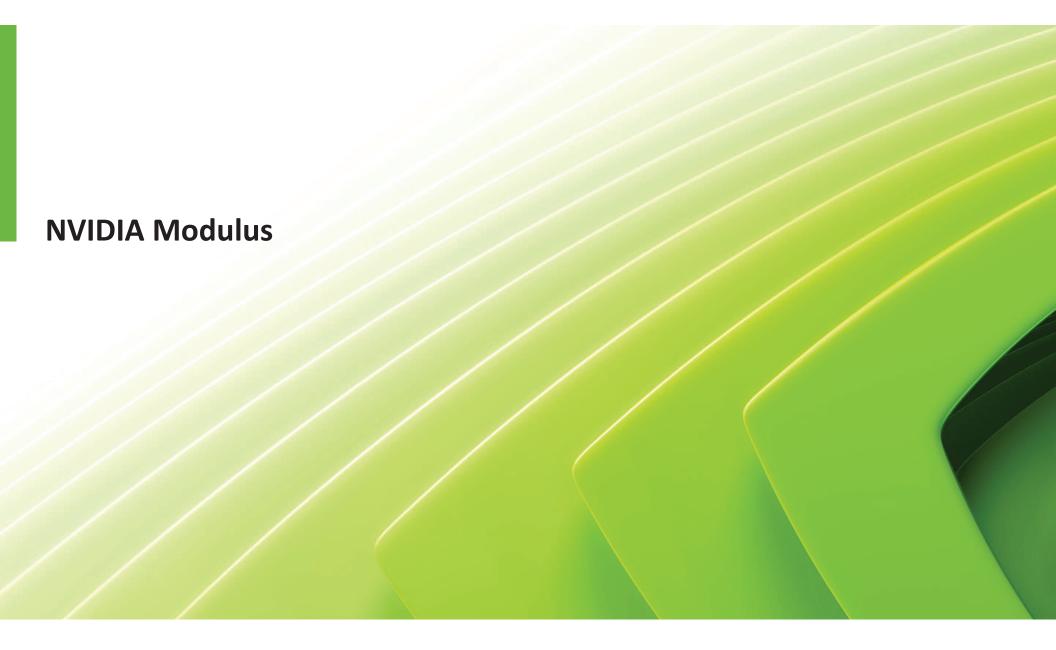
💿 NVIDIA.

NVIDIA AI Enterprise Supported Frameworks (1/3)

For additional information, see NGC Catalog

Framework	Description				
Maxine	NVIDIA Maxine is a suite of high-performance, easy-to-use, NVIDIA Inference Microservices (NIMs) and SDKs for deploying AI features that enhance audio, video, and augmented reality effects for video conferencing and telepresence.				
TAO Toolkit	he open-source NVIDIA TAO, built on TensorFlow and PyTorch, uses the power of transfer learning while simultaneously mplifying the model training process and optimizing the model for inference throughput on practically any platform.				
DeepStream	NVIDIA's DeepStream SDK is a complete streaming analytics toolkit based on GStreamer for AI-based multi-sensor processing, video, audio, and image understanding.				
Metropolis	NVIDIA Metropolis is an application framework, set of developer tools, and partner ecosystem that brings visual data and AI together to improve operational efficiency and safety across a range of industries.				
NeMo	NVIDIA NeMo [™] is an end-to-end platform for developing custom generative AI—including large language models (LLMs), multimodal, vision, and speech AI—anywhere.				
TensorRT	NVIDIA [®] TensorRT [™] is an ecosystem of APIs for high-performance deep learning inference.				
Triton Inference Server	An open-source software that helps standardize model deployment and delivers fast and scalable AI in production.				
TensorFlow	TensorFlow is an open-source platform for machine learning. It provides comprehensive tools and libraries in a flexible architecture allowing easy deployment across a variety of platforms and devices				

NVIDIA AI Enterprise Supported Frameworks (2/3)

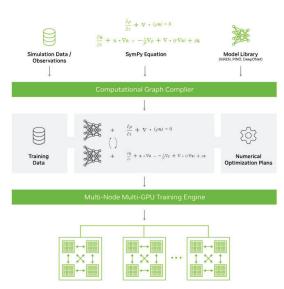

For additional information, see NGC Catalog

Framework	Description			
Riva	NVIDIA [®] Riva is a set of GPU-accelerated multilingual speech and translation microservices for building fully customizable, real-time conversational AI pipelines.			
Monai	MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging.			
Clara	NVIDIA Clara is a suite of computing platforms and software services that powers AI healthcare solutions from imaging to genomics and drug discovery.			
Clara Holoscan	NVIDIA Holoscan is the sensor processing platform that streamlines the development and deployment of AI and high- performance computing (HPC) applications for real-time insights.			
RAPIDS	RAPIDS is a suite of GPU-accelerated data science and AI libraries with APIs that match popular open-source data tools.			
cuOpt	NVIDIA [®] cuOpt [™] optimizes operations by enabling better, faster decisions with accelerated computing.			
Merlin	NVIDIA Merlin empowers data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale.			
Morpheus	NVIDIA Morpheus is an open application framework that supports real-time data monitoring with AI and threat detection in data centers and cloud.			

NVIDIA AI Enterprise Supported Frameworks (3/3)

For additional information, see NGC Catalog

Framework	Description			
Modulus	NVIDIA Modulus is an open-source framework for building, training, and fine-tuning Physics-ML models with a simple Python interface.			
CUDA	The CUDA compute platform extends from the 1000s of general-purpose compute processors featured in our GPU's compute architecture, parallel computing extensions to many popular languages, powerful drop-in accelerated libraries to turnkey applications and cloud-based compute appliances.			
CUDA Toolkit	The NVIDIA [®] CUDA [®] Toolkit provides a development environment for creating high-performance, GPU-accelerated applications.			
HPC SDK	The NVIDIA HPC Software Development Kit (SDK) includes the proven compilers, libraries and software tools essential to maximizing developer productivity.			
Kubernetes Device Plugin	The NVIDIA Kubernetes Device Plugin registers GPUs as compute resources in the Kubernetes cluster.			
PyTorch Geometric	PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.			
PyTorch	PyTorch is a GPU accelerated tensor computational framework.			
DGL	Deep Graph Library (DGL) is a Python package built for the implementation and training of graph neural networks on top of existing DL frameworks			

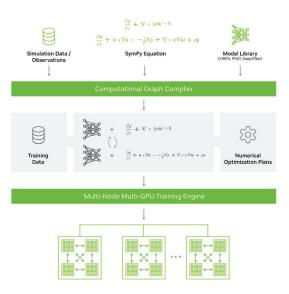

NVIDIA Modulus

Open-Source Platform for developing physics-ml algorithms

.

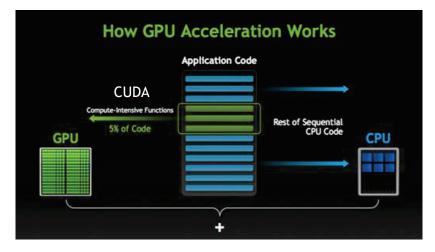
- Open-Source project for Physics-ML innovation and collaboration
- Platform for building physics-ml models using architectures and algorithms that satisfy first principles
- Training and inference pipelines that bring the best of NVIDIA's AI stack for scalable and optimal performance

	OV ension	Modulus Symbolic					
Modulus Core							
Models	Data Pipelines	Phys-ML Utils	Distributed				
Geometry & Point Clouds	DALI	Triton	Logging & Checkpoints				


💿 NVIDIA

Open-Source AI Toolkit for Physics AI

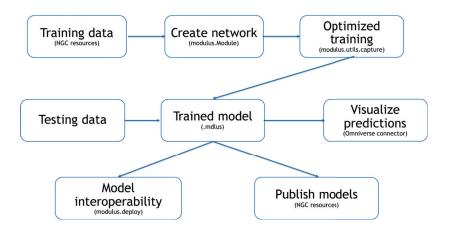
- Enterprise grade toolkit for Physics-ML:
 - Python based, designed for coupling data and physics, optimal performance and scalable
- Reference case studies and recipes as starting points
 - Model architecture Zoo
- Research and develop your Physics-ML library:
 - Interoperable with PyTorch Import your R&D model*
- · Facilitates open collaboration within the Physics-ML scientific community


Source code: https://github.com/NVIDIA/modulus

💿 NVIDIA

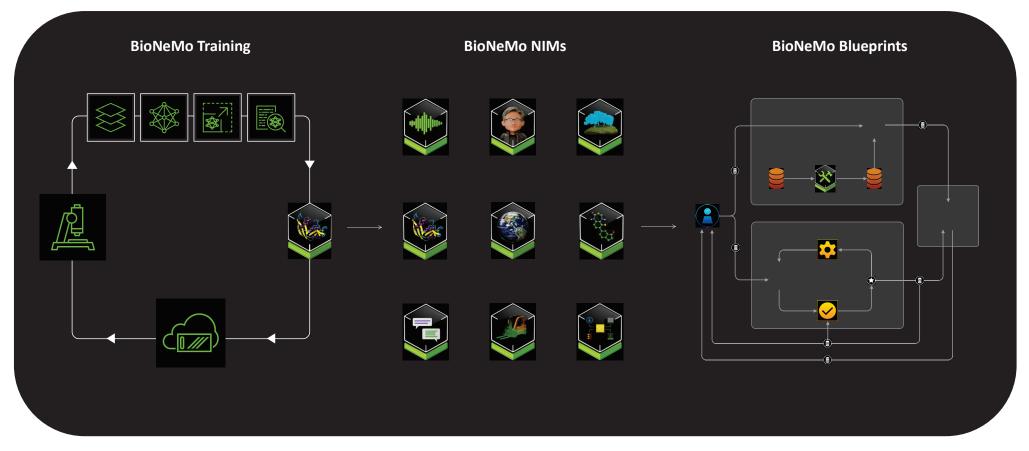
What is it not?

Not a purpose-built app

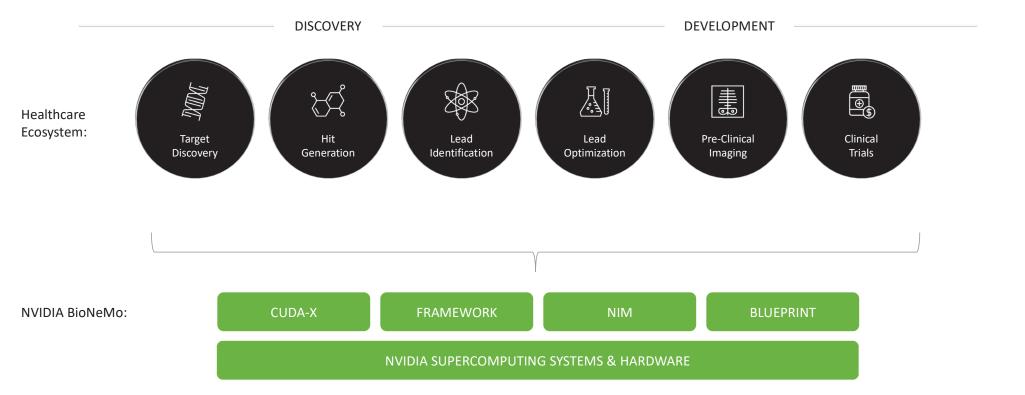


No out of the box solutions – Build your solution using Modulus Toolkit

But we do offer reference workflows.

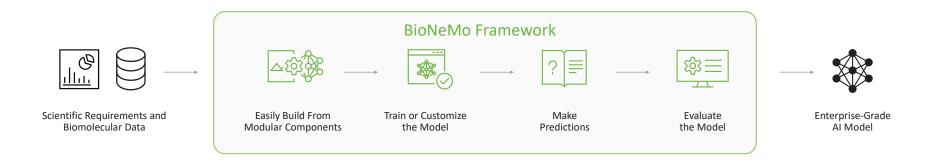


But how to frame my problem as an AI problem?


NVIDIA BioNeMo Platform & NIMs

NVIDIA BioNeMo Platform

NVIDIA BioNeMo Platform

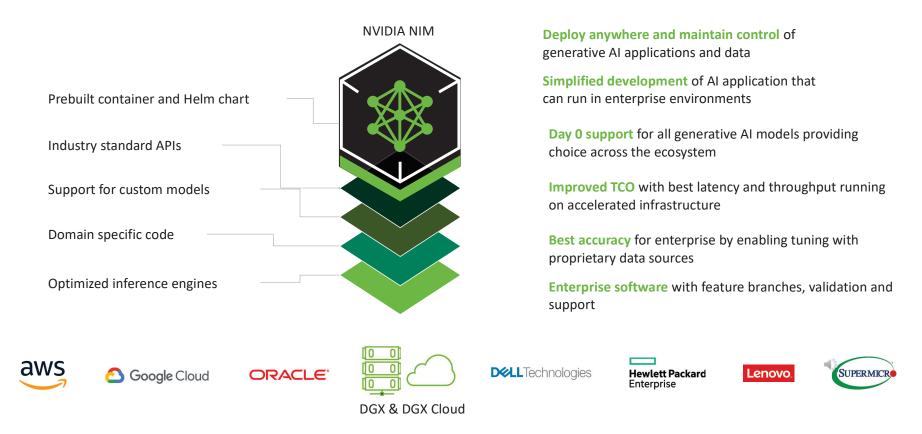

Tools to help the healthcare ecosystem build AI-driven drug discovery workflows

💿 NVIDIA.

NVIDIA BioNeMo Framework

Build Better Models Faster for Drug Discovery, Now Open-Source on GitHub

Reference: https://arxiv.org/abs/2411.10548


💿 NVIDIA.

NVIDIA NIM: Inference Microservices for Generative AI

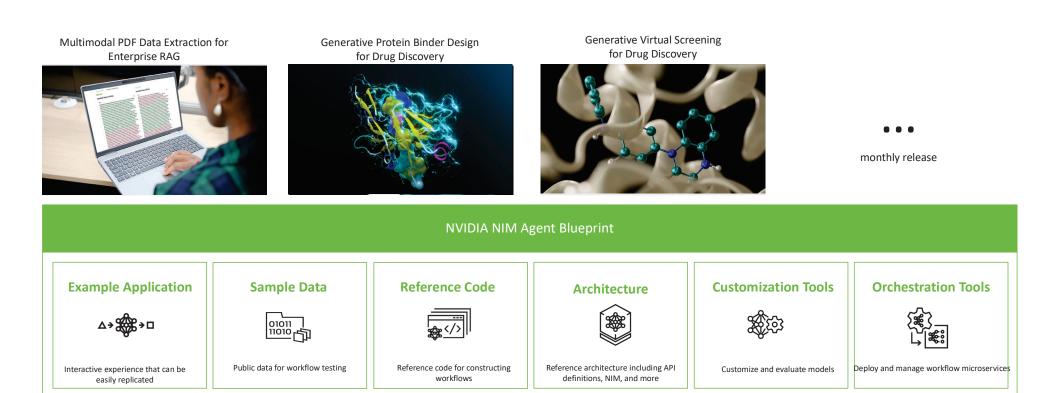
Accelerated runtime for generative AI

Microsoft

Azure

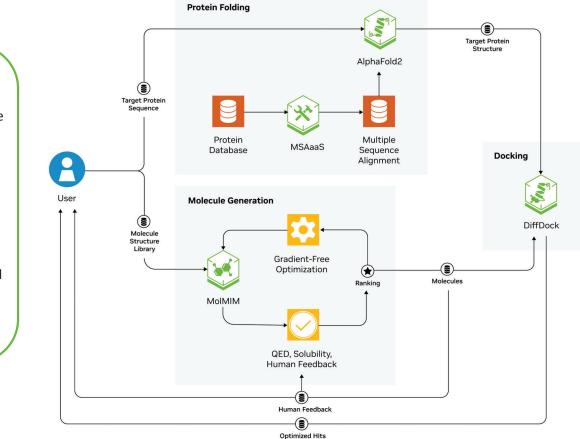
💿 NVIDIA

NVIDIA BioNeMo NIM microservices


Instantly use your own data with optimized biomolecular models deployable anywhere

NVIDIA BioNeMo Blueprints

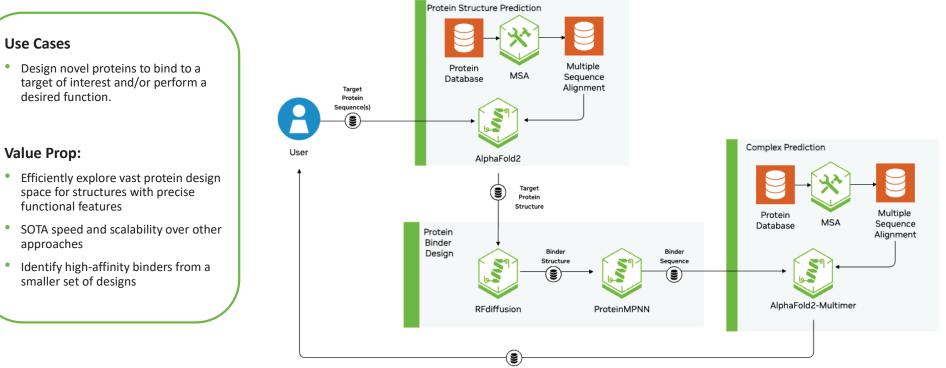
NVIDIA BioNeMo Blueprints Are Reference Workflows for Drug Discovery


Available on build.nvidia.com

💿 NVIDIA

Generative Virtual Screening

Models: MSA, AlphaFold2, MolMIM, DiffDock 2.0

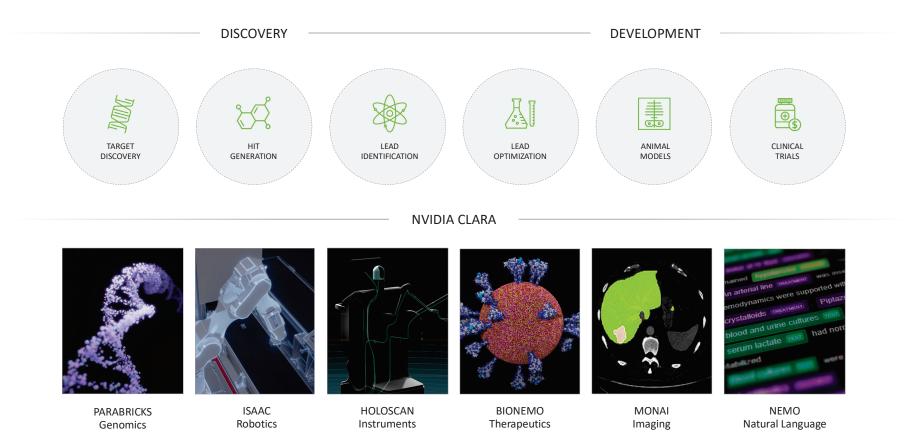


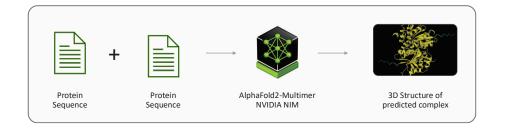
Benefits

- Use generative AI to more efficiently explore chemical space to optimize molecular designs for multiple features simultaneously
- Accelerated NIMs allow rapid evaluation of large molecule databases to identify better drug candidates faster
- Test fewer molecules to identify virtual hits, reducing the time and cost of drug development

Generative Protein Binder Design

Models: MSA, AlphaFold2, RFdiffusion, ProteinMPNN, Alphafold2-Multimer


Optimized Binders

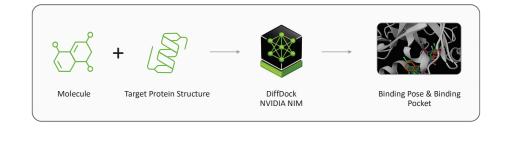

NVIDIA Clara for Drug Discovery and Development

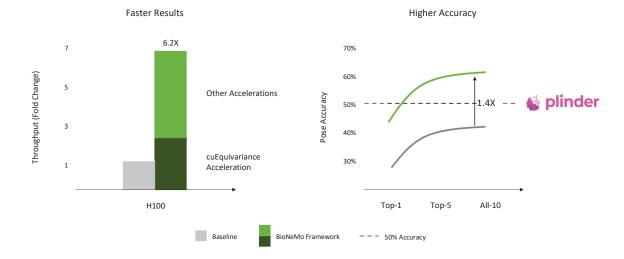
A Computer-Aided Drug Discovery Acceleration Platform

AlphaFold2-Multimer NIM

a major advancement in protein complex structure prediction

• What does it do?

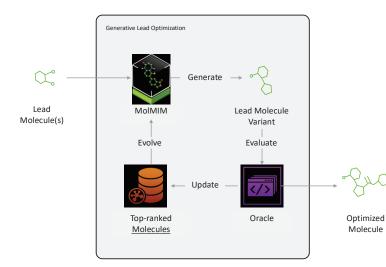

 $\,\circ\,$ Given two amino acid sequences, predict the 3D structure of those two proteins binding each other.


• Why this NIM?

- Reference Accuracy: Outperforms previous SOTA protein complex prediction methods
- High Demand: Understanding protein structure is a important part of understanding its function and role in health and disease
- Which blueprints are enabled?
- Protein Binder Design
 - The process of creating or discovering molecules that selectively bind a target protein with high affinity and specificity

DiffDock 2.0 NIM

Molecule protein docking inspired by DiffDock, accelerated and trained by NVIDIA



DiffDock: https://arxiv.org/abs/2210.01776

💿 NVIDIA.

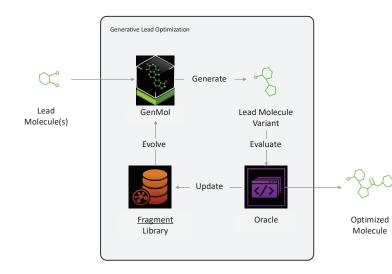
MolMIM NIM

Make your chemical design search more targeted and efficient

What does it do?

- Controlled molecular generation
- Multiparameter Optimization
- Accepts User-Defined Oracles

Why this NIM?


Highly Customizable: Tailor molecule generation to specific research
needs

Workflows Enabled

- Virtual screening
 - Rapid computational evaluation of large chemical libraries to identify potential hits that can bind to a target
- Lead optimization
 - Improve molecular hits from initial experiments to improve biochemical qualities needed for a drug (e.g. low toxicity, proper distribution)

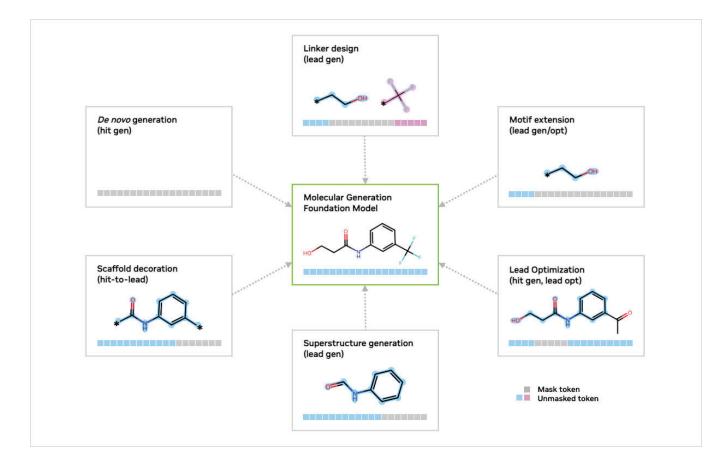
GenMol NIM: a generalist molecular generation model

a generalist foundation model for molecular generation

• What does it do?

- De novo or goal-directed molecular generation
- Accepts User-Defined Oracles and/or fragment libraries

• Why this NIM?


- Versatility: SOTA for goal-directed optimization and high performance at diverse molecular tasks without task-specific fine-tuning.
- o Efficiency: Up to 35% faster generation compared to traditional models.

• Workflows Enabled

- Virtual screening
 - Rapid computational evaluation of large chemical libraries to identify potential hits that can bind to a target
- Lead optimization
 - Improve molecular hits from initial experiments to improve biochemical qualities needed for a drug (e.g. low toxicity, proper distribution)

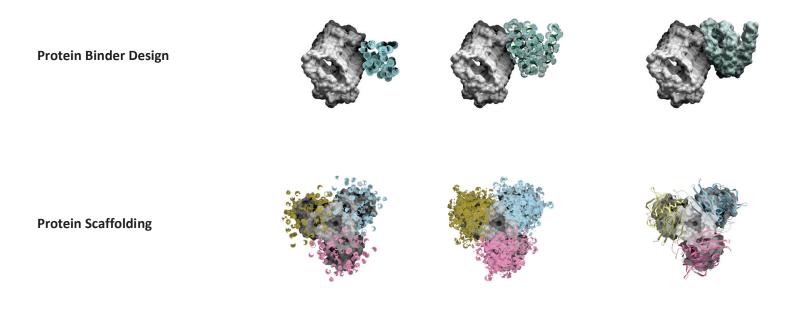
GenMol Uses SAFE Molecules For a Variety of Tasks

Goal-Directed Molecular Generation for Hit to Lead Workflows

GenMol: https://arxiv.org/abs/2501.06158

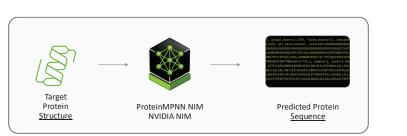
RFdiffusion NIM

a leading model in guided protein generation


• What does it do?

- o <u>Guided, conditional</u> protein structure prediction
- o Unconditional protein structure generation
- Why this NIM?
 - State-of-the-Art Protein Design via Diffusion: more accurate and flexible *de novo* protein designs compared to many traditional or purely sequence-focused models.
 - **Proven Experimental Validation:** designed proteins have been shown to fold and function as intended—an important advantage for researchers seeking real-world impact.
 - Seamless Integration and Community Support: Open-source model with an active user community, offering resources, collaborative tools, and benchmarks
- Which blueprints are enabled?
- Protein Binder Design
 - The process of creating or discovering molecules that selectively bind a target protein with high affinity and specificity

RFdiffusion NIM


a leading model in guided protein generation

ProteinMPNN NIM

a leading model in guided sequence generation

- $\circ\,$ Given a protein structure, design a sequence that will fold into it
- Why this NIM?
 - **High Speed and Scalability:** The model is computationally efficient, enabling the rapid design of thousands of sequences for a single protein backbone. This scalability is ideal for large-scale protein engineering projects.
 - Experimentally Validated Performance: Has high experimental success rates in generating sequences that fold into desired structures and maintain functionality
- Which blueprints are enabled?
- Protein Binder Design
 - The process of creating or discovering molecules that selectively bind a target protein with high affinity and specificity

WPSC

Running NVIDIA NIMs on Bridges-2

Two ways to get your AI jobs done, with minimal setup.

Julian Uran Senior Systems Software Engineer / Machine Learning Research Engineer, PSC

June 18th, 2025

🧩 Context (Goal & Problem)

What You Want to Do:

- Use NVIDIA's prebuilt NIMs for AI tasks
- Do it on Bridges-2, with minimal setup

The Challenge:

- 80+ NIMs exist (as of now)
- You want an easy way to run them
- You don't want to build containers from scratch

 $\ensuremath{\mathbb{C}}$ Pittsburgh Supercomputing Center, All Rights Reserved

V Solution Overview

Bridges-2 Supercomputer Resources:

- Nodes with H100 GPUs (V100 not supported for NIMs)
- Reproducible batch/interactive workflows, Slurm scheduling system.

Two Ways to Run NIMs on Bridges-2:

- 1. **Simple Batch Mode:** specify input, run script, get output.
- 2. 💻 Interactive Mode: launch server, send custom queries.

 $\ensuremath{\mathbb{C}}$ Pittsburgh Supercomputing Center, All Rights Reserved

V Solution Overview

- Choose what fits your workflow.
- No need to build, just request NIMs we do not yet have.

Tutorial: Step-by-Step

Learning by doing.

Batch Mode (Simple)

Best for: easy, repeatable jobs (fixed pipelines).

Just add queries to a file and go.

Use Case: I have a list of inputs and just want results.

Steps:

- 1. cd /ocean/containers/nim/<container_name>/
- 2. Check usage notes: cat README.md
- 3. Add your queries to input_queries.txt
- 4. Run: sbatch nim_auto.sbatch input_queries.txt output.txt

Outputs: Will appear in the output folder defined in script.

Interactive Mode

- Best for: custom logic, testing.
- Start server, then query it from client.

Use Case: I want to run my own logic/client against a live API.

Steps:

- 1. Start interactive Slurm session
- 2. cd /ocean/containers/nim/<container_name>/
- 3. Run server: bash run.sh
- 4. In another terminal: bash nim_client.sh (or use nim_client.py)

 $\ensuremath{\mathbb{C}}$ Pittsburgh Supercomputing Center, All Rights Reserved

Each NIM folder includes:

File / Folder	Purpose
nim_auto.sbatch	Starts server + client batch
nim_client.sbatch	Batch client to send queries
input_queries.txt	Your input file
run.sh	Interactive server launcher
nim_client.sh/py	Query interactively
cache/	Pre-loaded models, speeds up run
README.md	Usage guide tailored to Bridges-2

Step by Step "Demo"

Let's See It in Action

I'll show both workflows using a sample NIM.We'll cover:

- How to navigate the container folder
- Where to add input
- How to run batch vs interactive

Interactive: Start Slurm job

Interactive: run.sh

[©] Pittsburgh Supercomputing Center, All Rights Reserved

Interactive: run.sh

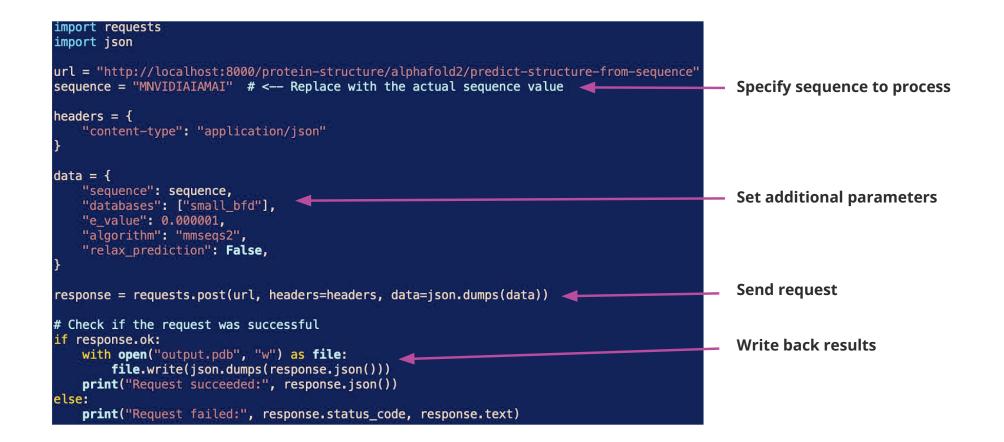
researcher@w003:/ocean/containers/nim/alphafold2/interactive \$ bash run.sh

Interactive: health_ready.sh

#!/bin/env bash

curl http://localhost:8000/v1/health/ready

researcher@w003:/ocean/containers/nim/alphafold2/interactive \$


curl http://localhost:8000/v1/health/ready

Interactive: nim_client.sh

researcher@w003:/ocean/containers/nim/alphafold2/interactive \$

bash nim_client.sh

Interactive: nim_client.py

Interactive: nim_client.sh

//usr/bin/env bash

<pre>researcher@br011:/ocean/containers/nim/alphafold2 \$</pre>									

cd /ocean/containers/nim/

cd alphafold2

cd batch

sbatch nim_auto.sbatch
input_file output_file

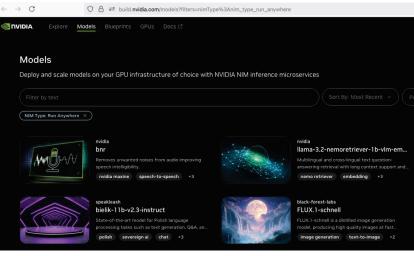
Example:

sbatch
--output=\$HOME/nim_auto.%a.out
nim_auto.sbatch
\$HOME/input_queries.txt
\$HOME/nim_auto_results.pdb

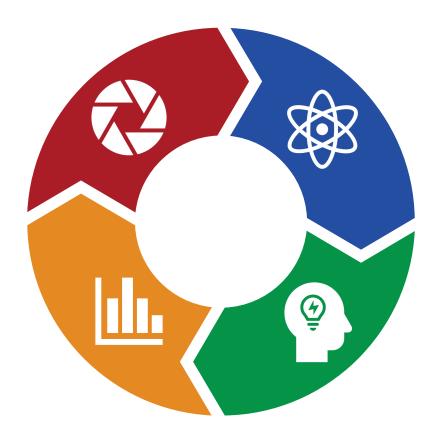
Batch: nim_auto.sbatch

Results: output.pdb (Protein Data Bank file)

	Atom num	ber							
Record type	e \ Atom name				3D Ång	ströms coordinates	B-factor (a	atomic displacement)	
	Å	Ļ						-	
MODEL	. 1								
ATOM	1	N	MET		1	-14.099	7.725 -15.523	1.00 62.06	Ν
ATOM	2	CA	MET		1	-13.884	6.903 -14.336	1.00 62.06	C
ATOM	3	С	MET	A	1	-12.415	6.516 -14.200	1.00 62.06	C
ATOM	4	CB	MET		1	-14.754	5.645 -14.388	1.00 62.06	C
ATOM	5	0	MET	Α	1	-11.933	5.634 -14.912	1.00 62.06	0
ATOM	6	CG	MET		1	-16.240	5.933 -14.528	1.00 62.06	C
ATOM	7	SD	MET	Α	1	-17.233	4.406 -14.751	1.00 62.06	S
ATOM	8	CE	MET	Α	1	-16.605	3.412 -13.369	1.00 62.06	C
ATOM	9	Ν	ASN	Α	2	-11.584	7.640 -14.052	1.00 83.88	N
ATOM	10	CA	ASN	Α	2	-10.137	7.675 -13.865	1.00 83.88	C
ATOM	11	С	ASN	Α	2	-9.657	6.522 -12.988	1.00 83.88	C
ATOM	12	CB	ASN	Α	2	-9.706	9.014 -13.263	1.00 83.88	C
ATOM	13	0	ASN	Α	2	-10.397	6.039 -12.130	1.00 83.88	0
ATOM	14	CG	ASN	Α	2	-10.303	9.257 -11.891	1.00 83.88	C
ATOM	15	ND2	ASN	Α	2	-10.109	10.461 -11.365	1.00 83.88	Ν
ATOM	16	0D1	ASN	Α	2	-10.933	8.371 -11.309	1.00 83.88	0
ATOM	17	N	VAL	Α	3	-8.961	5.496 -13.418	1.00 88.02	N
ATOM	18	CA	VAL	Α	3	-8.245	4.335 -12.900	1.00 88.02	C
ATOM	19	С	VAL		3	-7.973	4.519 -11.408	1.00 88.02	C
ATOM	20	CB	VAL	Α	3	-6.919	4.101 -13.658	1.00 88.02	C
			/	*	×			t	<u>+</u>
	Residue name Residue sequence number				equence number	l Occupancy		Chemical element	
	Chain identifier					•		. ,	
								©	Pittsburgh Supercomputing Center, All Rights Res


Where to Start

Step 1: Find Your NIM


- Already available ones? \rightarrow <u>Bridges-2 User Guide</u>
- Go to build.nvidia.com \rightarrow Models \rightarrow <u>NIM Type: Run Anywhere</u>
 - Find the one that fits your task

Step 2: Request New Ones (If Needed)

- Fill this form: psc.edu → <u>NIM Container Request Form</u>
- We handle the setup.

What Happens Behind the Scenes (FYI)

STAGE 1: Pull

We fetch & test the container

STAGE 2: Configure

Prepare usage scripts

STAGE 4: Publish

STAGE 3: Document

Document notes, best practices.

Add to the Bridges-2 catalog, available under: /ocean/containers/nim/< container_name>/

Pick Your Workflow:

- 🗾 **Batch:** quick, easy, no code
- 💻 Interactive: flexible, real-time

Need a NIM?

- See what's ready: Bridges-2 User Guide → Containers -> <u>NIM Containers</u>
- **Browse:** build.nvidia.com → Models → <u>NIM Type: Run Anywhere</u>
 - Find the one that fits your task
- **Request:** Bridges-2 User Guide \rightarrow Containers \rightarrow NIM Containers \rightarrow <u>Request a NIM</u> <u>Container on Bridges-2 Form</u>

Happy to help you get started—ask away.

Where to Get Help: PSC Support (Email help@psc.edu)

Consider applying to participate in the PSC/CMU/Pitt Hackathon in partnership with NVIDIA:

• <u>PSC/CMU/Pitt Open Hackathon | Open Hackathons</u> - **Deadline is June 25**.