The
Bigger
Picture

John Urbanic

Parallel Computing Scientist
Pittsburgh Supercomputing Center

Distinguished Service Professor
Carnegie Mellon University
Copyright 2025



Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

*  Fully Connected (FC)

*  Convolutional (CNN)

* Residual (ResNet) [Feed forward]

* Recurrent (RNN), [Feedback, but has vanishing gradients so...]
* Long Short Term Memory (LSTM)

* Bidirectional LSTM

* Transformer (Attention based)

Several of these are particularly common...



Residual Neural Nets

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful.
How do we reconcile these two phenomena? One, very successful, method is to use some feedforward.

Helps preserve reasonable gradients for very deep networks

*  Very effective at imagery

*  Used by AlphaGo Zero (40 residual CNN layers) in place of previous
complex dual network

«  100s of layers common, Pushing 1000 #Example: input 3-channel 256x256 image
X Input(shape=(256, 256, 3))

y conv2D(3, (3, 3))X

z keras.layers.add([x, yl])

Haven't all of our Keras networks been built as strict layers in a sequential method? Indeed, but Keras supports a
functional APl that provides the ability to define network that branch in other ways (multiple inputs or multiple
outputs, or layers with multiple inputs or multiple outputs, or any non-linear topology such as here). It is easy and
here (https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat

experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates
the concept beautifully.


https://www.tensorflow.org/guide/keras/functional

Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most
effective techniques in deep learning.

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character

recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true -
text.

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny
iprmoatnt tihng is taht the frist and Isat Itteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".

The dog chased the cat up the tree.




MW

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiter and

Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware. |
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTM takes care of the
details for us (but has a /ot of options).

The Keras folks even provide us with an MNIST version (https://keras.io/examples/mnist hierarchical rnn/), although |
think it is confusing as we are now killing a fly with a bazooka.

| recommend https://keras.io/examples/conv Istm/, which uses network is used to predict the next frame of an artificially
generated movie which contains moving squares. A much more natural fit.


https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/

Bi-directional LSTMs

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

The dog chased the ca

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious: The dog chased the ca( up the tree.

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the Keras IMDB
movie review sentiment analysis example (https://www.tensorflow.org/tutorials/text/text_classification_rnn).

mode’
tf

tf.
tf.
tf.
tf.
tf.

D

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you
interested in natural language processing, and related to our running theme of dimensionality reduction. To
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is
represented by a 64 dimensional vector.

= tf.keras.Sequential ([
.layers.
layers.
layers.
.layers.
Tayers.
Tayers.

.keras

keras

keras.
keras.

keras.
keras.

Embedding(encoder.vocab_size, 64),

Bidirectional (tf.keras.layers.LSTM(64, return_sequences=True)),
Bidirectional (tf.keras.layers.LSTM(32)),

Dense(64, activation='relu'),

Dropout(0.5),

Dense (1)




Transformers

We have strayed solidly into the realm of Natural Language Processing (NLP). The current state of the art here, which has
largely subsumed these earlier techniques, are Transformer, or self-attention based networks. These form the basis of
ChatGPT and similar applications.

The seminal implementation goes

L_atest News.

While we use the basic building bl
architectures have a lot of parts. TeSIa haS recently moved away

The idea is to process the kind of { frOM transformers to a diffusion

but with the ability to learn the re

distant, tokens. In other words, pa baSEd apprOaCh.

than others.

While these designs have proven surprisingly powerful in NLP (emergent!
emergent!), they have yet to find a central use in scientific problems.

Given the incredible effort and funding invested in these, it seems inevitable
that the scientific community will find some way to leverage this capability. (sifted right
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Autoencoder

Input Layq Output Layer

This autoencoder concept is very
foundational.

It can be used for powerful
generational networks by controlling
the latent space as in variational
autoencoders.
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Deepfake Training

Latent Features




Deepfake At Work

Latent Features
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/ao Does DiCaprio

The Chinese app Zao did the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265



https://twitter.com/AllanXia/status/1168049059413643265

Latest and Greatest Version

VideoGigaGAN: Towards Detail-rich Video
Super-Resolution

Yiran Xu'2, Taesung Park!, Richard Zhang!, Yang Zhou!, Eli Shecht
Feng Liu', Jia-Bin Huang?, and Difan Liu!

! Adobe Research

2 University of Maryland, College Park
http://videogigagan.github.io

. = '

TTVSA BasicVSR++ BasicVSR++

Fig.1: We present VideoGigaGAN, a generative video super-resolution m
that can upsample videos with high-frequency details while maintaining temp
consistency. Top: we show the comparison of our approach with TTVSR [33]
BasicVSR

fine-grained detailed than previous methods. Bottom: our model can produc
high-quality videos with 8 x super-resolution. Please see the video results on ¢

project page.

3.6 Loss functions

We use stardard, non-saturating GAN loss [14], R1 regularization [34], LPIPS [62]

'”Tpi‘;:‘ and Charbonnier loss [9] during the training.
1XW

H L(X1. %) = paanLoan(G(x). DG(x1))) + pr1 L (D(Xy))
+ prripsLrpips(Xe. Xt) + pichar Lohar (X, X¢)

(2)

where Charbonnier loss is a smoothed version of pixelwise ¢, loss, figan, fiR1.

ILLPIPS, flChar are the scales of different loss functions. x; is one of the LR input

frames, X; is the corresponding ground-truth HR frame. We average the loss
. over all the frames in a video clip during the training.
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Hyperparameters. We use a pretrained 4x GigaGAN image upsampler as
our base model. It contains three downsampling blocks in the encoder and five
upsampling blocks in the decoder. The spatial self-attention layers are only used
in the first block of the decoder for memory efficiency. For the flow network,

Fig. 3: Overvi 1
(VSR) model is we use a lightweight SpyNet [38]. For t.hc'low—pass filters, we use a kernel of
ﬁ[l.-‘k.ﬁ. 4,1] before the downsampling. We set pgan = 0.05, pg1 = 0.2048, .
: LLpips = B, ftohar = 10 in Eqn. 2. During training, we randomly crop a 64 x 64
upsampler into patch from each LR input frame at the same location. We use 10 frames of
decoder blocks. each video and a batch size of 32 for training. The batch is distributed into 32

flow-guided pro NVIDIA A100 GPUs. We use a fixed learning rate of 5x 10~ for both generator
Anti-aliasing bl and discriminator. The total number of training iterations is 100, 000.

GigaGAN upsa;

shuttle the high frequency features via skip connection to the decoder layers to
compensate for the loss of details in the BlurPool process.




Discriminative vs. Generative

Discriminative models classify things, and need only know which side of the hyper-plane the instance lies on.
Generative models need to understand the distribution to generate new instances.

Discriminative Generative

Discriminative models need only capture the conditional probability of digit Y, given image X: P(Y|X). Generative
models must understand the joint probability P(X,Y).




Generative in Action

Stable Diffusion, DALL-E, Midjourney and other such applications are built upon this idea.

For example, Stable Diffusion was trained on pairs of images and captions from Common Crawl data scraped from the

web, where 5 billion image-text pairs were classified.

In a clever mashup of ideas we have discussed, this
network attempts to de-noise images in conjunction
with text prompts, resulting in some amazing
"comprehension".

Stable Diffusion's code and model weights have been
released, and it runs on consumer GPUs with 8 GB of
VRAM!
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Hierarchical Text-Conditional
Image Generation with CLIP Latents

Aditya Ramesh” Prafulla Dhariwal® Alex Nichol*
OpenAl OpenAl OpenAl
aramesh@openai.com prafulla@openai.com alex@openai.com

Casey Chu” Mark Chen
OpenAl OpenAl
casey@openai.com mark@openai.com

Abstract

Contrastive models like CLIP have been shown to learn robust representations of
images that capture both semantics and style. To leverage these representations for
image generation, we propose a two-stage mod prior that generates a CLIP
image embedding given a text caption, and a decoder that generates an image
conditioned on the image embedding. We show that explicitly generating image
representations improves image dnuun mlh minimal loss in pholnrmh\m and
caption similarity. Our decode: d 1 on image s can also
produce variations of an image that preserve both its semantics and style, while
varying the non-essential details absent from the image ruprumulmn, Moreover,
the joint embedding space of CLIP enables I ided image mani

in a zero-shot fashion. We use diffusion models for the decoder and experiment
with both autoregressive and diffusion models for the prior, finding that the latter
are computationally more efficient and produce higher-quality samples.

1 Introduction

Recent progress in computer vision has been driven by scaling models on large datasets of captioned
images collected from the internet [10, 44, 60, 39, 31, 16]. Within this framework, CLIP [39] has
emerged as a successful representation learner fos ages. CLIP embeddings have a number of
desirable properties: they are robust to image distribution shift, have m\pruxn‘c zero-shot capabilities,
and have been fine-tuned to achieve state-of-the-art results on a wide variety of vision and language
tasks [45]. Concurrently, diffusion models [46. 48, 25] have emerged as a promising generative
modeling framework, pushing the state-of-the-art on image and video generation tasks [11, 26, 24].
To achieve best results, diffusion models leverage a guidance technique [11, 24] which improves
sample fidelity (for images, photorealism) at the cost of sample diversity.

In this work, we combine these two approaches for the problem of text-conditional image generation.

We first train a diffusion decoder to invert the CLIP image encoder. Our inverter is non: rministic,
and can produce multiple im.xbus corresponding to a given image embedding. The presence of
an encoder and its approximate inverse (the decoder) allows for capabilities beyond text-to-image
As in GAN inversion [62, 55], encoding and decoding an input image produces semanti-
cally similar output images (Figure 3). We can also interpolate between input images by inverting
interpolations of their image embeddings (Figure 4). However, one notable advantage of using the
CLIP latent space is the ability to semantically modify images by moving in the direction of any
encoded text vector (Figure 5), whereas discovering these directions in GAN latent space involves

“Equal contribution

panda mad scientist mixing sparkling chemicals, artsta

a corgi’s head depicted as an explosion of a nebula




Architectures

With the layers we have discussed, we can build countless different networks (and use TensorFlow to define them).
Indeed, you may get the feel that the current "building block" is actually a functional network.

Generative Adversarial Network YOLO (You Only Look Once)

Generator Network

.
chair.99¢

1 00 chair.99

wine lasﬂ.oc-

|

Faster R-CNN Faster R-CNN

knife.83 w/ ResNet [19] w/ FPN [27]

bowl.81

wvonvomwuuuon
Pooling

GoogleNet / Inception Other

Mask R-CNN



Some Taxonomies

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

* Classification (What we did)

* Localization (Where is the digit?)

* Detection (Are there digits? How many?)
* Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some
other building blocks.

As you learn more about machine learning, you will see various ways to categorize the algorithms or tasks or general
approaches to doing something useful. Don't believe any of them are either comprehensive or canonical. They are just
useful ways to keep track of the explosion of options in this space.



Tasks

Classification What we've been doing.

Regression Return a value. Stock price.

Transcription Convert between representations. OCR, speech recognition.

Synthesis Create new input examples. Speech synthesizer. Lots of science these days!
Translation Like the word says. Google Translate.

Segmentation Return a relabeled input vector. Tumor detection.

Denoising Return uncorrupted example. Video game ray tracing.

Again, neither comprehensive nor definitive. The definitions vary from one author to the next, and the list grows all
the time.



Learning Approaches

Supervised Learning
How you learned colors.
What we have been doing just now.
Used for: image recognition, tumor identification, segmentation.
Requires labeled data. Lots of it. Augmenting helps.
Essence: Learning to map one vector to another, given enough examples of the mapping.

Unsupervised Learning
(Maybe) how you learned to see.
What we did earlier with clustering and our recommender, and Deepfake.
Find patterns in data, compress data into model, find reducible representation of data.
Used for: Learning from unlabeled data.
Might be a great way to bootstrap Supervised Learning (train an autoencoder and build from those
weights).

Reinforcement Learning
How you learned to walk.
Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
Used for: Go (AlphaGo Zero), robot motion, video games.
Don't just read data, but interact with it!

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.



Training Computers to Tame Chaos

Al Based Simulation?

O Chaos Model
Researchers started with the evolving solution to the Kuramoto-Sivashinsky

equation, which models propagating flames

— e —————
=

A wise man once (not that long ago) told me "John, | don't T T
need a neural net to rediscover conservation of energy." “Lypmoy!

® Machine Learning
After training itself on data from the past evolution of the Kuramoto- Sivashinsky

system, the “reservoir computing” algorithm predicts its future evolution:

Time (in units of Lyapunov time)

O-0 Do They Match?
Subtracting B from A shows that the algorithm accurately predicts the model

out to an impressive 8 Lyapunov times, before chaos ultimately prevails:

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott ——
Phys. Rev. Lett. 120, 024102 — Published 12 January 2018 Time: Cin unit




Physics Informed
Neural Networks

Naviers-Stokes loss

But maybe we can include our a priori knowledge.
These types of networks (PINNs) are rapidly gaining
interest in the world of physical modeling.

Wikipedia

They are also no magic bullet. We now have two competing loss
functions, for the data and the physics. And if the gradients in our
network now have physical significance, we have to be more rigorous in
our treatment of them. No RelLU activation functions, but instead
something like the Gaussian Error Linear Unit (GELU).




Al Based Simulation Is Here To Stay

“We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab
initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly
optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-

single/half precision.

4

Water
AE: 1.2 meV/n
AF: 0.037 eV/IA

: ab initio potential deep potential

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, Linfeng Zhang
2020 ACM Gordon Bell Prize Winner




Try It Yourself

NVIDIA's GPU Bootcamp materials contain a great example of this type of work. The premise is to learn a mapping from
boundary conditions to steady state fluid flow. The tutorial works through several different models, starting with a Fully
Connected Network, then using a CNN and finally introducing a more advance Residual Network approach. You should
be able to jump right in with what we have learned here.

Input data X

Simulated flow lines Y

https://github.com/gpuhackathons-
org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc ai/ai science cfd/English/python/jupyter

notebook/CFD/Start Here.ipynb



https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb
https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb
https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb

From recent research paper to CMU physics undergraduate problem.
Newton vs. the machine

MNRAS 000, 1-6 (2016 Preprint 17 Oc

tober 2019 piled using MNRAS IATEX style f

Newton vs the machine: solving the chaotic three-body
problem using deep neural networks

Philip G. Breen'*{, Christopher N. Foley® *#, Tjarda Boekholt?

and Simon Portegies Zwart*

sriginal form 222
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Figure 3. Mean Absolute Error (MAE) vs epoch. The
ANN has the same training structure in each time interval. Solids
lines are the loss on the training set and dashed are the loss on the
validation set. T < 3.9 corresponds to 1000 labels per simulation,
similarly T < 7.8 to 2000 labels and T < 10.0 to 2561 labels/time-
points (the entire dataset). The results illustrate a typical occur-
rence in ANN training, there is an initial phase of rapid learning,
>.g. all5100 epochs, followed by a stage of much slower learning
in which relative prediction gains are smaller with each epoch.

Training example 1 Valldation example T

Training example 2 Validation example 2

Figure 4. Validation of the trained ANN. Presented are
two examples from the training set (left) and two from the vali-
dation set (right). All examples were randomly chosen from their
datasets. The bullets indicate the initial conditions. The curves
represent the orbits of the three bodies (red, blue and green, the
latter obtained from symmetry). The solution from the trained
network (solid curves) is hardly distinguishable from the con-
verged solutions (dashes, acquired using Brutus (Boekholt &
Portegies Zwart 2015)). The two scenarios presented to the right
were not included in the training dataset.




Has Deep Learning left any room for other approaches?

Character Recognition
Capchas

Chess
Go



“Theoretician’s Nightmare” and Other Perspectives

The above is paraphrasing Yann LeCun, the godfather of Deep Learning.
If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better, as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon groundbreaking papers of a few years
ago.

The previously mentioned Christopher Olah has this rather useful summation: "People sometimes complain: 'Neural
networks are so hard to understand! Why can’t we use understandable models, like SVMs?' Well, you understand
SVMs, and you don’t understand visual pattern recognition. If SVMs could solve visual pattern recognition, you would
understand it. Therefore, SVMs are not capable of this, nor is any other model you can really understand."

My own humble observation: Deep Learning looks a lot like late 19t century chemistry. There is a weak theoretical
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more
perspiration than inspiration."



plain why this is funny. Think about it step-by-step.
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But unironically

The comic is satirizing the difference in approaches to improving model
performance between statistical learning and neural netv

In statistical learning, the character is shown to be concerned with overfit-
ting and suggests a series of complex and technical solutions, such as minimizing
structural risk, reworking the loss function, and using a soft margin.

In con , the neural mt\mrl\s character simply suggests adding more

ers to the model. This is often seen as a common solution to improving
performance in neural networks, but it’s also considered a simplistic and
brute-force approach.

The humor comes from the contrast between the complexity and speci-
ficity of the statistical learning approach and the simplicity and generality of the
neural network approach. The "But unironically" comment adds to the humor by
implying that, despite being simplistic, the "stack more layers" approach is often
effective in practice.




Lazy Scientist's Survey of the Field

Kaggle Challenge

The benchmark driven nature of deep learning and competitions:
research, and its competitive consequences, have B

found a nexus at Kaggle.com. There you can find
over 20,000 datasets:
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Trees

(How much of our earlier learning can we apply here?)

XGBoost is the latest, and most popular, evolution of the Decision Tree approach. Let's say we want to predict is some
given person is likely to be a buyer of a certain car model:

age > 40
gender=m

income > 80 income > 50

0.1 0.2

0.8 -0.2 0.7 0.3

Trees are desirable in that they are non-linear, but still analytically tractable, and can do both regression and classification.



Error

Gradient Boosted Trees

Trees (iterations)



Remember This?




Dataset to classify:

Prediction: Decision functions of first 30 trees

predictions of GB (all 50 trees)

test loss: 0.430

tree depth: 5 learning rate: 0.1 rotate dataset:

ol <9 O

subsample: 100% # trees: 50

aassss——f) o

[ rotate trees
show gradients on hover
[] use Newton-Raphson update

A very cool interactive application to
explore these concepts, and try various
hyperparameters, was done by Alex
Rogozhnikov and can be found at:

://arogozhnikov.gi
gradient boosting playground.html

If you want to understand XGBoost in
detail, you can find the original paper at:

https://arxiv.org/pdf/1603.02754.pdf

An in-depth, but still beginner-friendly,
video from StatsQuest can be found at:

://www.youtube.com/watch?v=GrJP9
FLV3FE



http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://arxiv.org/pdf/1603.02754.pdf
https://www.youtube.com/watch?v=GrJP9FLV3FE
https://www.youtube.com/watch?v=GrJP9FLV3FE
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https://playground.tensorflow.org/



Great Way To Compare

Classification

FEATURES + — 2 HIDDEN LAYERS ouTPUT
Which p s do Test loss 0.001

_ 1Y = raining loss 0.001

4 neurons 2 neurons

REGENERATE

https://playground.tensorflow.org/



The Classic Conundrum

Problem type

Classification

+ — 2 HIDDEN LAYERS OUTPUT

erties do Test loss 0.006
feed in? Y Training loss 0.003

4 neurons 2 neurons

+

+

REGENERATE

https://playground.tensorflow.org/



XGBoost in Particular

There are various implementations of gradient boosted trees. XGBoost combines several important innovations:

* Parallelizes well both across cores and nodes
* Clever cache optimization
*  Works well with missing data

The end result is an efficient algorithm that works well enough with non-optimal hyperparameters the beginners can often
make quick progress.

The scikit-learn version is probably the most popular, but there is a Spark version
(https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j spark_tutorial.html), and if you want a deeper dive, NDVIDIA

has this pretty nice taxi fare regression model that uses GPUs with Spark and does a hyperparameter search. Note that |
have not tried these myself:

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/

TensorFlow has a boosted tree APl along with a nice walkthrough example in the docs:

https://www.tensorflow.org/tutorials/estimator/boosted trees

However, note that this is not the XGBoost version (yet).


https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/
https://www.tensorflow.org/tutorials/estimator/boosted_trees

Other Toolboxes

You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths
TensorFlow Neural Nets Python, C++ Very popular.

PyTorch Neural Nets Python (Lua) Also very popular. Used to be very
different with it's dynamic graphs
and eager execution, but lacked
simple layers. Now fairly similar in
approach.

Spark MLLIB Classification, Regression, Python, Scala, Java, R Very scalable. Widely used in
Clustering, etc. serious applications. Lots of plugins
to DL frameworks: TensorFrames,
TF on Spark, CaffeOnSpark, Keras
Elephas.

Scikit-Learn Classification, Regression, Python Integrates well with TF to create
Clustering powerful workflows.

Neural Nets Python (on top of TF, Theano) Now completely absorbed into TF.

Neural Nets Python Latest DeepMind (part of Google)
framework. Missing pieces, but
getting there. Similar to TF & PT.
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Inference Is Fast

Also bU|Id|ng thelr own training chips.

Put into tiles, into Trays, into Cabinets to create Dojo.

362 TFLOPSs &ris/crps
22.6 TFLOPS rpz2

645mm2
7nm Technology

: 50 Billi
10TBps/dir. on-chip Bandwidth ool
4TBps/edge. ofi-chip Bandwidth 11+ Miles

Of Wires

400W TDP

S ey ;,u

uu.,.ﬂ,%u;_

rg 32MB SRAM
1)

96x96 Mul/Add array

RelLU hardware
Pooling hardware
36 TOPS @ 2 GHz
2 per chip, 72 TOPS total

iPhone Demo

'i T=ESLA



Everyone Doing Specialized Hardware

NVIDIA

Highlighting 4 bit precision!

Google

Ee

A
R

Cloud TPU v6
1.8 exaflops (int 8)
purported...
Due 2024Q4

Intel

1,048,576 artificial neurons,
and 120 million synapses

Kapoho Point a 4-inch form
factor board featuring eight
Loihi 2 chips

Also new AVX512_VNNI
(Vector Neural Network)
instructions like an FMA
instruction for 8-bit
multiplies with 32-bit
accumulates on new
processors.

Amazon

Inferentia for inference and
Trainium for training. Use
standard TensorFlow and
Torch in their EC2 Cloud.

This is where Alexa runs.



Everyone Doing Specialized Hardware

Meta Microsoft Cerebras Neuromorphic

WPSC

At PSC! Brain only uses

708 TFLOPS/s (INT8) "Launched" in late 20W.
2023, but info still
, outinfo st * 850,000 Sparse Linear .
sparse.... Analog, pruning,

Algebra Compute Cores <
spiking, lots of

e 2.6 trillion transistors new directions.
We are also
continuously
learning how little
+ 220 Pb/s interconnect we know about

bandwidth how biological
mechanisms work.

* 20 PB/s aggregate
memory bandwidth



More Inspiration

Laughlin was the first to provide explicit
guantities for the energetic cost of
processing sensory information. Their
findings in blowflies revealed that for
visual sensory data, the cost of
transmitting one bit of information is
around 50 fJ (5 x 10~'4 Joules), or
equivalently 104 ATP molecules.

The units on this graph are pJ, 1000X
larger. Thus, neural processing efficiency
is still far from Landauer's limit of kTIn(2)
J, but still considerably more efficient than
a modern computer’s near memory. For
far (MPI network, or further) accesses it is
a huge difference.



Scalable MatMul-free Language Modeling

a0 Wang',

!University of California, Santa Cruz Soochow University
*University of California, Davis *LuxiTech

Abstract

Matrix multiplication (MatMul) typically dominates the overall computational
1age models (LLMs). This cost only grows as LLMs scale to
embedding dimensions and context lengths. In this work, we show that
\Lu\hn operations can be completely eliminated from LLMs while maintaining
strong performance at billion-parameter scales. Our experiments show that our
proposed MatMul-free models achieve performance on-par with state-of-the-art
Transformers that require far more memory during inference at a scale up to at least
2.7B parameters. We investigate the scaling laws and find that the performance
1p between our MatMul-free models and full precision Transformers narrows
as the model size increases. We also provide a GPU-efficient implementation
of this model which reduces memory usage by up to 61% over an unoptimized
baseline during training. By utilizing an optimized kernel during inference, our
model’s memory consumption can be reduced by more than 10x compared to
unoptimized models. To properly quantify the efficiency of our architecture,
we build a custom hardware solution on an FPGA which exploits lightweight
operations beyond what GPUs are capable of. We processed billion-parameter
scale models at 13W beyond human readable throughput, moving LLMs closer
to brain-like efficiency. This work not only shows how far LL.Ms can be stripped
back while still performing effectively, but also points at the types of n'umllnnx
future accelerators should be optimized for in processi
lightweight LLMs. Our code implementation is available

roduction

Matrix Multiplication (MatMul) is the dominant operation in most neural networks, where dense
layers involve vector-matrix multiplication (VMM), convolutions can be implemented as block-sparse
VMMs with shared weights, and self-attention relies on matrix-matrix multiplication (MMM). The
prevalence of MatMul is primarily due to Graphics Processing Units (GPUs) being optimized for
MatMul operations. By leveraging Compute Unified Device Architecture (CUDA) and highly opti
mized linear algebra libraries such as cuBLAS, the MatMul operation can be efficiently parallelized
and accelerated. This optimization was a key factor in the victory of AlexNet in the ILSVRC2012
competition and a historic marker for the rise of deep learning [1]. AlexNet notably utilized GPUs
to boost training speed beyond CPU capabilities, and as such, deep learning won the ‘hardware
lottery” [2]. It also helped that both training and inference rely on MatMul

Despite its prevalence in deep learning, MatMul operations account for the dominant portion of
computational expense, often consuming the majority of the execution time and memory access during

*Corresponding author, email to: pzhoul0@ucsc.edu, jsn@ucsc.edu

Applied Inspiration

The secret sauce is ternery logic, with values
of +1, 0 and -1.

The matrix multiplies degenerate into some
simpler operations.

This is the may be the finish line of the race
to the bottom of precision.

Binary doesn't seem to capture the behaviors
we hope for (although it is early days), but
ternary does.

This is a bit awkward for our currently binary
electronics.



Read, read, read!

turing lecture

One of our major goals is to leave you with the ability to understand

many of the latest publications in applied, scientific Al.
irtebesrismsalectorsemarars e

Of course, 2 days is not enough for you to become an expert, but you e g

might be surprised how much of the literature you can understand. e e el

You should be well-positioned to fill in the gaps. Dee

If you want to test your knowledge, this "state of the field" lecture by -

the foremost pioneers of deep learning is an excellent summation of Learnlng

the current leading edge. It is targeted at practitioners of the art, so

don't feel intimidated by any unknown references. But if you do get for AI

the gist of it, congratulations, you are holding your own with current T
URING LECTURE
researchers. oshua Bengio, Yo L D

From Hand-Coded Symbolic
Expressions to Learned Distributed
resel ions

https://dl.acm.org/doi/pdf/10.1145/3448250




Demos

Ray-traced videogames! Recurrent CNN.

http://research.nvidia.com/sites/default/files/publications/dnn_denoise_author.pdf



A little more about

GPT-4

“



A little GPT-4

99 pages!

"Given both the competitive landscape and the

safety implications of large-scale models like GPT-4,

this report contains no further details about the
architecture (including model size), hardware,
training compute, dataset construction, training
method, or similar."

GPT-4 Technical Report

OpenAl*

Abstract

hd\ﬂ\] model pre-trained to predict the next token in a document. ~
i ﬂpm\:r.l perhnmum_e on measures

1|1tm\lruuure .m:i 1pt|m

range of scales. This allowed us to accurately prer.ml some aspects of GPT-
performance based on models trained with no more than 1/1,000th the compute ¢
GPT

Introduction

s technical report presents GPT-4, a la multimodal model capable of processin
text inputs and produc xt outp uch mml:'] s are an important area of study as they ha\e lh:'
potential to be used in ppl
and machine translation. As such, they have been the subject of substantiz
recent years [1-34]

One of the main goals of developing such models is to improve their ability
natural se text, p: m:ulurl_\' 1n more cumplex _:nd nuanced scenari

Alm niemnn\tmlﬂ stron; perl ormar
ses the English-language state-of-the
s well

» 3 ing deep learning infrastructure and
tion 111sthn|i\ llml hrh.ne ]'I[EJL bl 3 range of scales. This allowed us to make
ut the expected performanc iPT-4 (based on \mall runs trained in similar ways)
nst the final run to increase confiden

. GPT-4 has similar limitations to earlier GPT models [1, 3
er from “hallucinations™), has a limited context window, and does not learn
*Please cite this work as “OpenAl (2023)". Full authorship contribution statements appear at the end of the

document.




GPT-4 isn't cheap. This is the trend.

3 Predictable Scaling

A large focus of the GPT-4 project was building a deep learning stack that scales predictably. The
primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive
model-specific tuning. To address this, we dew]uped llltrdHIIUL ture .md nptlmualmn mel]mda that

have very predictable behavior across —-'«~"~ ~==t-- Mhooe fmmmrm o de Ao d e b o

predict some aspects of the perform; Capability prediction on 23 ““d'”g pr“b'ems

| B55% compul — Mean Log Pass Aate
1€ » 1]

I

3.1 Loss Prediction

['he final loss of properly-trained large
I ) g

laws in the amount of compute used t

To verify the scalability of our optim
internal codebase (not part of the trai
{as in Henighan et al. [15]): L

but using at most 10,000x less compu
started, without use of any partial res
high accuracy (Figure 1).

® Obsarved
Pradiction
gpt-4




What can't it do?

iform Bar Exam (MBE+MEE+MPT)
LSAT
SAT ence-Based Reading & Writing
SAT Math
Graduate Record Examination (C ) Quant;
Graduate Record Examination (GRE) Verbal
Graduate Record Examination (GRE) Wr.
USABO Semifinal Exam 2020
USNCO Local Section Exam 2022
Medical Knowledge
Codeforces Ratin

AP Arnt History

nd Comp
ish Literature and Compositi
AP Environmental Science
AP Macroec ics
AP Microcconomics

AP Phys

AP Statistics

AP US Government

Certified Sommelier (theory knowledge)

Advanced Sommelier (theory knowle

Leetcode (medium})

Leetcode (hard)

4/ 6 (~54th)
150 (99th - 100th)

36/ 60

(below 5th)

- 100th)
4 (43rd - 59
4(71st-8
2 (14th - 441h)
2 (8th - 22nd)
Hst - 100th)
Ah -
nd - 100th)
th - 84th)
3rd - 100th)
Sth - 100th)

Sth - 100th)

90th)
161 (~83rd)
3rd)
80th)
(~62nd)
th)
4 /6 (~54th)

150 (99th - 100th)

2 (below 5th)

h - 100th)

5th - 100th)

4 (43rd - 59th)
4(TlstL- 1)
2 (14th - 44th)
2 (8th - 22nd)
5 (91st - 100th)
5 (84th - 100th)
4 (60th - 82nd)
4 (66th - B4th)
3rd - 100th)

5 (85th - 100th)
5 (88th - 100th)
4 (74th - 89th)
4 (65th - 87th)

f 150 (10th - 19th)

213 /400 (~10th)

149 (~40th)

th - 100th)
4 (62nd - 85th)
1 (Oth

22nd - 46th)

2 (14th - 44th)

2 (8th - 22nd)

5 (91st - 100th)

ird - 48th)

nd)

3 (30th - 66th)

5(83rd - 100th)

3 (40th - 63rd)

4 (77th - 88th)

(74th - 89th)

(65th - 87th)
150 (10th - 19th)

(dth - 8th)

Table 1. GPT performance on aca
of the real exam. We report
as the percentile of tes




Now with vision and
spooky reasoning!

What is funny about this image? Describe it panel by panel.

AL MAWA

—
o )

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

The package for the "Lightning Cable" adapter with a picture of
connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.




Plenty of competition.

g s : AP COMPARE IMAGE .
Artificial Analysis MoDELS PROVIDERS . API PROVIDERS SPEECH TO TEXT LEADERBOARDS v o 5 ABOUT onthly Insights |- Subserib)
. . AI Builders Survey
Independent analysis of Al language models and API providers & Participate & receive our report of results
Understand the Al landscape and choose the best model and API provider for your use-case 7 Participate
Highlights

QUALITY

NAVIGATION Models analysis API Providers analysis

From artificialanalysis.ai



Why you really care...

Can this code?

“



Sparks of Artificial General Intelligence:
Early experiments with GPT

éhastien Bubeck : 1andrasekaran Ronen Eldan Johannes Gehrke
Eric Horvitz Ece Kamar er Lee Yin Tat Lee Yuanzhi Li Scott Lundberg
ar: Hamid Palangi arco Tulio Ribeiro Yi Zhang

Micr

Abstract

» been « oping and refining lar;
i of dom
2l dev
f compute and data. In this paper, we r
development by OpenAl. We
PT and (

GP

From this different paper. e e e

en the breadth and depth of
( ill incompl

need for pu
al influe
future research directions.

Contents

1 Introduction
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2.1 ) t bility

a la Dall-E)




Impressive results
on standard exam
benchmarks.

Note how they test
against unseen
examples.

3.1.1 Coding challenges

A common way to measure coding skill is to pose coding challenges that t'(‘(]11i1'{‘ implementing a specific
functionality or algorithm. We first benchmark GPT-4 on HumanEwval [CTJ721], a docstring-to-code dataset
consisting of 164 coding problems that test various aspects of programming |U"I[ and proficiency. As shown
in Table 1, GPT-4 outperforms other LLMs, including text-davinci-003 (the base model of ChatGPT) and
other models trained specifically on code, code-davinci-002, and CODEGEN-16B [NPH22].

Model |GPT-4 text-davinci-003 Codex(code-davinei-002) CODEGEN-16B

Accuracy | 82% 65% 39% 30%

Table 1: Zero-shot pass@]1 accuracy comparison of different models on HumanEwval

Although GPT-4's accuracy shows a big jump compared to previous models, it could be that GPT-4 has
seen and memorized some (or all) of HumanEval during pre-training. To account for this possibility, we also
evaluate it on LeetCode (https://leetcode.com), a popular platform for software engineering interviews,
where new problems are constantly posted and updated. We used LeetCode in Figure 1.5 in the introduction,
where GPT-4 passes all stages of 1|1u<L interviews for lllcl]‘.ill tech companies. l-1< re, to test on fresh questions,
\ 1 Code | postes @] er 8th ., which is after GPT-4's
pretraining ]:{‘1‘iud \- seen in th(‘ e xdmplv in FI"']I!(‘ 3.1, we ]mutv the pmhlvlll instructions into a prompt,
ask GPT-4 to write a python function, and use the official Leet Code online judge to check for correctness. We
present the results in Table 2, where we compare GPT-4 to other models and to human performance based
on LeetCode contest results (users who fail all questions are not included, and thus this is a strong sample
of humans). We report both pass@1 and pass@5 accuracies, which measure whether the model produces a
correct solution in the first or in the first five attempts, respectively. GPT-4 significantly outperforms the
other models, and is comparable to human performance (which we measure in Appendix C.1).

Easy Median Hard Overall
pass@f k=1 k=58 |k=1|k=0 k=1 |k=5|k=1|k=5
GPT-4 68.2 | 86.4 | 40.0 | 60.0 | 10.7 | 14.3 || 38.0 | 53.0
text-davinci-003 50.0 | 81.8 16.0 34.0 0.0 3.6 19.0 36.0
Codex (code-davinci-002) 27.3 al).0 12.0 22.0 3.6 3.6 13.0 23.0
Human (LeetCode users) 72.2 37.7 7.0 38.2

Table 2: Zero-shot pass@]l and pass@5 accuracies (%) on LeetCode.




Data Visualization In Figure 3.2, we ask both ( nd ChatGPT to e d n the BT
le 2 and produce a plot in Python based on a con ation with the user. Aff ards, we ask both

models to p ous operations on the produced plots. While both models e data correctly

(not a trivi

k =1and k = 5), ChatGPT never produces the desired plot. In cont

user ests, manip g the data into the ht format and adapt

we include other 1ple where C 7is zes the IMDb da

Prompt:

It can take instructions at a
very high level and emit

and we will come up with a way to

M ° visualize it better in a question
CO E! I I l I I la I ly I EE r( EI l and answer format The table is >
showing the performance of different

language models (and human users)

| a n g u a ge S in generating solutions to code
(]

challenges. Pass@l means the first
generation works, while Pass@5 means

one out of 5 generation works

Can you make both plots have the same
range in the y axis? And the legend

has each model name twice.

It also responds to feedback
in the form of error
messages (not shown here LTI

to fix or refine results.

from the other 37

GPT-4 visualizes data
s the format for this g asked the model how to plc

t with the layout and arro



And we aren't just talking
code snippets. Here is a
complete game.

I want:

ill. The enemy (red) ru
i urved tre

1) *
‘..s - n'gui-‘ Py

b 4
. gum v
- e

around. Tt nemy (red) atte: the gap but into a cube and
bounces intc > ai to obstruct, the defender (m ) mimics its move to follow up into the air, but ends up
failin c the player (blue) in the

3D HTML game in Ja




Prompt: GPT-4:

I want to write a customized optimizer in pytorch, the optimizer should do:

1. the parameters for the optimizer is learning rate, momentum ,weigth decay, d_dim, k and factor alpha

2. the optimizer goes through each parameter in the network, and then

-- Get the gradient of this parameter, reshape it to 2D by looping through the dimensions, and keeping the dimension whose actual
dimension (shape) is equal to d_dim, do an SVD decomposition of the parameter so W = U\Sigma V.

-- Keep the top k singular vectors of W, so we get a new matrix W_ k = U \Sigma k V.

-- Keep the top 2k singular vectors of W, so we get a new matrix W_{2k} = U \Sigma_{2k} V.

-=- Normalize W_Kk according to the momentum of the F-norm of W_{2k}.

def step(self):
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p. grad data

-- Truncate each coordinate of W_k to the top alpha percentile of all the coordinates, in absolute value. reshape grad to 2D X
-- Apply momentum on W_k, and then update the network parameters using this momentum. grad 24 = grad reshape(-1, group['d_dim'])
== Apply weight decay. # SVD decompositior

U, S V = torch. svd(grad 2d)

# keep top k singular vector

Gk = UL: :group['k']] g torch. diag(S[:group['k'1]) g
V[ group[ <']].T

keep top 2k singular vectors

The tru est meta: GPT_4 Writing DL G_2k = U[:, :2sgroup['k']] [§ torch.diag(S[:2+group['k'11)

@ vL: 2-group[ k']]1.T

3 I .1‘,:1Ah

code. Note that this is not a pre- o

threshold = torch.quantile(torch.abs(G_k),
M M M group['alpha'])
existing code that it has learned. G kiRoren a6 < chrosnone =
# apply momentum
if 'momentum_buffer' not in group:
group['momentum_buffer'] = torch.zeros_like(G_k)
group['momentum_buffer'] = group['momentum'] %
group['momentum_buffer'] + G_k
# update parameters

p-data.add_(-group['lr'] * group['momentum_buffer'])

Deep Learning. Writing code for deep learning requires knowledge of mathematics, statistics, and fa-
miliarity with frameworks and libraries such as PyTorch, TensorFlow, Keras, etc. In Figure 3.4 we ask both
GPT-4 and ChatGPT to write a custom optimizer module, a task that can be challenging and error-prone
even for human deep learning experts. We give these models a natural language description, which includes
a sequence of non-trivial operations such as applying SVD, truncating a matrix spectrally at the top-k and
top-2k eigenvalues, normalizing the top-k truncated matrix using the F-norm of the top-2k truncated matrix,
applying momentum and weight decay. These instructions are not spelled out in complete detail, e.g., “ap-
ply momentum on ;" requires “deep learning common sense”. It is important to note that this part 1(‘111(11

optimizer does not exist in the literature or on the internet, ax nd thus the models cannot have it memorized,

and must instead compose the concepts correctly in order to produce the code.




Reasoning about code execution. In the example in Figure 3.6, we ask GPT-4 and ChatGPT to
predict and explain the output of a C program that prints the size of two structures. GPT-4 correctly explains

that the output may vary depending on the alignment rule used by the compiler, and gives : ample of a

1ores the alignment issue and gives a wrong output, and
o the size of the structure.

sizer‘ £(x)

This fairly direct analysis does rinti ('Size of y: Yzu bytes\a size0t ()}
better than many programmers |
come across.

d align structures in mem
n the compiler, platform,
ut is:

viler uses 4-byte alignment for
ture member
tes from the bag

hutuuun or afte the membez° E:

in x, there may be 3 padding bytes after a and 3 paddlng b;te: after c,
while in y, there may be no padding at all. The size of a structure is
the sum of the of its members plus any padding bytes.
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