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Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using HDFS as
the backing store is a
common and sensible
option.
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RDD
Resilient  Distributed  Dataset



Spark Formula

1. Create/Load RDD
 Webpage visitor IP address log

2. Transform RDD
 ”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
 Wait until data is actually needed
 Maybe apply more transforms (“Distinct IPs")

4. Perform Actions that return data
 Count “How many unique U.S. visitors?”
 

Let's invite forum 
visitors to a local 
conference. How 
many might there 
be?



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

Simple Example
NASA asks: are 
people viewing our 
Hubble Space
Telescope content?



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

Simple Example

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine. 
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

Most modern languages have adopted this nicety.

The Python syntax is simply    lambda input_parameter: code



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

Simple Example

Lambdas

If we look at the spark documentation for filter, we will see that it asks us for a True/False function to determine 
if it should retain any element in the RDD. In this case, we could write the above line as:

HubbleLines_rdd = lines_rdd.filter(HubbleCheckFunction)

But then we have to write a separate function

def HubbleCheckFunction(element):
 return ("Hubble" in element)

Lambdas allow us to be much more concise.



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
4788

Simple Example

Transform

Action



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
4788

>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/Hubble.gif‘

Simple Example

Transform

Actions



Transformations vs. Actions

Transformations go from one RDD to another1.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and 
clever algorithms to minimize communication and parallelize the processing. You want to 
keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled 
down (collect), or along the way to "peek" at the process (count, take).

1 Yes, some of them also create an RDD (parallelize), but you get the idea.



Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func 
returns true.

flatMap(func) func can return multiple items, and generate a sequence, 
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Same Size

Fewer 
Elements

More 
Elements



Some Common Actions

Action Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function 
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element.  Used for side-effects (updating 
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD



Reduce!

Action Result

reduce(func) Aggregate the elements of the RDD by providing a function 
which combines any two into one (sum, min, max, …).

This may seem like it is an odd way of getting a sum, or a minimum, but this is a very key 
concept in data science, and throughout computing in general.

You might think of it as an elegant way to specify many scalable operations by merely 
specifying how any two elements combine.

But, the advantage it offers as data scales up is why it is an absolutely necessity that you 
get familiar with the concept.



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

Spark Context



Spark Sessions
Later on we will look at more complex APIs built on top of RDDs, the most important being DataFrames. To simplify access to those features 
Spark allows us to load them initially with the context as a SparkSession.

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Spark SQL example") .config("some.config","some-value").getOrCreate()

df = spark.read.json("demographics.json")

We are lucky that our Spark environment is configured by the PySpark shell, and we won't have to bother with much of this, but you will see 
this a lot in other Spark codes.

It is also useful to know how to create separate stand-alone spark scripts. They may need to setup a Spark Context manually

from pyspark import SparkConf, SparkContext

conf = SparkConf().setMaster("local").setAppName("Test_App")

sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py



>>> lines_rdd = sc.textFile("nasa_serverlog_202204.csv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
4788

>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/Hubble.gif‘

But it is all quite simple.



Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned in 
our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs.  They are similar 
to the general ones that we have seen.

• Keys do not need to be unique. Unlike a Python dictionary or a primary key in SQL.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an 
RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you 
can use the key/value operations that follow.



Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis.  That is, 
combine values with the same key.

groupByKey() Combine values with same key.  Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.



Pair RDD Actions

Action Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

As with transformations, all of the regular actions are available to Pair RDDs, and there 
are some additional ones that can take advantage of key/value structure.



Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with 
matching keys in self and other.  Each pair of elements will be 
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k, 
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either 
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v, 
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either 
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) 
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.



>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice", "$2000"), ("Bob", "$1200")])

Joins Are Essential

Any database designer can tell you how common joins are. They are how we combine 
information from different tables RDDs. Let's look at a simple example. We make an 
RDD of our top purchasing customers.

And an RDD with all of our customers' addresses.

>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 State St."), ("Frank", "555 Timer Lane"), ("Sally", "44 
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 West Oak")])

To create a mailing list of special coupons for those favored customers we can use a 
join on the two datasets.

>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)

>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 West Oak')), ('Joe', ('$103', '23 State St.')), ('Alice', ('$2000', '3 Elm Road'))]

If you are coming from a Pandas DataFrame 
background, joins are congruent with the 
Merge functions. If you've used them, you may 
have noticed that they can take some time with 
even small datasets. They do not scale well.



Shakespeare, a Data Analytics Favorite
Applying data analytics to the works of Shakespeare has become all the rage.  Whether determining the  legitimacy of 
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), or which word makes Macbeth so 
creepy ("the", yes) it is amazing how much publishable research has sprung from the recent analysis of 400 year old 
text.

We’re going to do some exercises here using a text file containing all of his works.



Some Simple Problems
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser 
window.

If you are starting from scratch on the login node:
1) interact  2) cd BigData/Shakespeare  3) module load spark  4) pyspark
...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is 
to think “key/value”. If you go that way, think about which 
data should be the key and don’t be afraid to swap it 
about with value. This is a very common manipulation 
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100


>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787 
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779 
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python 
unsorted dictionary of results:

... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1, 
'poet.': 2, 'Toad!': 1, 'leaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell': 
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, 'leas': 2, 'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG 

data, we want to remain as an RDD until we reach our final results. So, no.



>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787 
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779 
>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>> 
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>> 
>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)
[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>> 

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words. Could trigger

repartition.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.



for loops, collect in middle of analysis, large data structures

...

intermediate_results = data_rdd.collect()

python_data = []

for datapoint in intermediate_results:
    python_data.append(modify_datapoint(datapoint))

next_rdd = sc.parallelize(python_data)

...

Spark Anti-Patterns

Here are a couple code clues that you are not working with Spark, but probably against it.

Ask yourself, "would this work with billions of elements?". And likely anything you are doing with a for is something 
that Spark will gladly parallelize for you, if you let it. 



Some Homework Problems

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you 
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is 
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are 
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the",  "a"). You can 
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a 
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so 
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural 
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import  *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map( lambda x: stemmer.stem(x) )

Regular Expressions

This may not be a "Big Data" topic, but this is an 
incredibly useful capability to have in this field.

These are useful in navigating the command line, building 
filtering scripts and as integral parts of many 
programming languages, such as Python, which makes 
them immediately useful here.

You probably already know some of them, like the * 
wildcard and can pick up much of the rest in a 10 minute 
tutorial:

.at         matches any three-character string ending with "at", including "hat",
                           "cat", "bat", "4at", "#at" and " at" (starting with a space).

[hc]?at  matches "at", "hat", and "cat".



Who needs this Spark stuff?
As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python 
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are 
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB 
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.

* See Panda's creator Wes McKinney's "10 Things I Hate About Pandas" at
 https://wesmckinney.com/blog/apache-arrow-pandas-internals/



DataFrames:  Spark's SQL Side

As mentioned earlier, an appreciation for having some defined structure to your data has come back 
into vogue. SQL has returned! Or never left!

It simply makes sense and naturally emerges in many applications. It documents your data and helps to 
organize your code and thinking.

Also very importantly, it can greatly aid optimization, certainly with the Java VM that Spark uses, but 
also in general. SQL optimization engines are an enormous part of the world of data.

For these reasons, you will see that the newest set of APIs to Spark are DataFrame based. This is simply 
SQL type columns. Similar to Python pandas DataFrames, but based on RDDs, so much more scalable 
and flexible.



Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
                               ("Jose","Elm Pl.","ND",45698) ])
>>>
>>> aDataFrameFromRDD = spark.createDataFrame( row_rdd, ["name", "street", "state", "zip"] )
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name|  street|state|  zip|
+-----+--------+-----+-----+
|  Joe|Pine St.|   PA|12543|
|Sally| Fir Dr.|   WA|78456|
| Jose| Elm Pl.|   ND|45698|
+-----+--------+-----+-----+



Creating DataFrames

You will come across DataFrames created without a schema. They get default column names.

>>> noSchemaDataFrame = spark.createDataFrame( row_rdd )
>>> noSchemaDataFrame.show()
+-----+--------+---+-----+
|   _1|      _2| _3|   _4|
+-----+--------+---+-----+
|  Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+---+-----+

And you can create them inline as well.

>>> directDataFrame = spark.createDataFrame([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
                                              ("Jose","Elm Pl.","ND",45698) ],
                                            ["name", "street", "state", "zip"] )

Datasets
Spark has added a variation (technically a superset) 
of DataFrames called Datasets. For compiled 
languages with strong typing (Java and Scala) these 
provide static typing and can detect some errors at 
compile time.

This is not relevant to Python or R.



Spark DataFrames making life easier...

Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json

{"RecordNumber":1,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US",
{"RecordNumber":2,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PASEO COSTA DEL SUR","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US","LocationT
{"RecordNumber":10,"Zipcode":709,"ZipCodeType":"STANDARD","City":"BDA SAN LUIS","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":18.14,"Long":-66.26,"Xaxis":0.38,"Yaxis":-0.86,"Zaxis":0.31,"WorldRegion":"NA","Country":"US","Location

>>> df = spark.read.json("zipcodes.json")
>>> df.printSchema()
root
 |-- City: string (nullable = true)
 |-- Country: string (nullable = true)
 |-- Decommisioned: boolean (nullable = true)
 |-- EstimatedPopulation: long (nullable = true)
 |-- Lat: double (nullable = true)
 |-- Location: string (nullable = true)
 |-- LocationText: string (nullable = true)
 |-- LocationType: string (nullable = true)
 |-- Long: double (nullable = true)
 |-- Notes: string (nullable = true)
 |-- RecordNumber: long (nullable = true)
 |-- State: string (nullable = true)
 |-- TaxReturnsFiled: long (nullable = true)
 |-- TotalWages: long (nullable = true)
 |-- WorldRegion: string (nullable = true)
 |-- Xaxis: double (nullable = true)
 |-- Yaxis: double (nullable = true)
 |-- Zaxis: double (nullable = true)
 |-- ZipCodeType: string (nullable = true)
 |-- Zipcode: long (nullable = true)

>>> df.show()
+-------------------+-------+-------------+-------------------+-----+--------------------
|               City|Country|Decommisioned|EstimatedPopulation|  Lat|            Location
+-------------------+-------+-------------+-------------------+-----+--------------------
|        PARC PARQUE|     US|        false|               null|17.96|NA-US-PR-PARC PARQUE
|PASEO COSTA DEL SUR|     US|        false|               null|17.96|NA-US-PR-PASEO CO...
|       BDA SAN LUIS|     US|        false|               null|18.14|NA-US-PR-BDA SAN ...
|  CINGULAR WIRELESS|     US|        false|               null|32.72|NA-US-TX-CINGULAR...
|         FORT WORTH|     US|        false|               4053|32.75| NA-US-TX-FORT WORTH
|           FT WORTH|     US|        false|               4053|32.75|   NA-US-TX-FT WORTH
|    URB EUGENE RICE|     US|        false|               null|17.96|NA-US-PR-URB EUGE...
|               MESA|     US|        false|              26883|33.37|       NA-US-AZ-MESA
|               MESA|     US|        false|              25446|33.38|       NA-US-AZ-MESA
|           HILLIARD|     US|        false|               7443|30.69|   NA-US-FL-HILLIARD
|             HOLDER|     US|        false|               null|28.96|     NA-US-FL-HOLDER
|               HOLT|     US|        false|               2190|30.72|       NA-US-FL-HOLT
|          HOMOSASSA|     US|        false|               null|28.78|  NA-US-FL-HOMOSASSA
|       BDA SAN LUIS|     US|        false|               null|18.14|NA-US-PR-BDA SAN ...
|      SECT LANAUSSE|     US|        false|               null|17.96|NA-US-PR-SECT LAN...
|      SPRING GARDEN|     US|        false|               null|33.97|NA-US-AL-SPRING G...
|        SPRINGVILLE|     US|        false|               7845|33.77|NA-US-AL-SPRINGVILLE
|        SPRUCE PINE|     US|        false|               1209|34.37|NA-US-AL-SPRUCE PINE
|           ASH HILL|     US|        false|               1666| 36.4|   NA-US-NC-ASH HILL
|           ASHEBORO|     US|        false|              15228|35.71|   NA-US-NC-ASHEBORO
+-------------------+-------+-------------+-------------------+-----+--------------------



And Sometime DataFrames Are Limiting

DataFrames are not as flexible as plain RDDs, and it isn't uncommon to find yourself fighting to do something that 
would be simple with a map, for example. In that case, don't hesitate to flip back into a plain RDD.

>>> row_rdd = sc.parallelize([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
                               ("Jose","Elm Pl.","ND",45698) ])

>>> aDataFrameFromRDD = spark.createDataFrame( row_rdd, ["name", "street", "state", "zip"] )

>>> another_row_rdd = aDataFrameFromRDD.rdd

Notice that this is not even a method, it is just a property (probably just pointing at the data attribute). This is a clue 
that behind the scenes we are always working with RDDs.

A minor technicality here is that the returned object is actually a "Row" type. You may not care. If you want it be the 
original tuple type then

>>> tuple_rdd = aDataFrameFromRDD.rdd.map(tuple)

Note that when our map function is a function that already exists, there is no need for a lambda.



Speaking of types...
DataFrames require much more attention to types. When a schema (column names and types) is missing, it will try to 
infer the schema from the data, which should be an RDD of either Row, namedtuple, or dict.

So, not strings. If we don't want to fill in the schema argument, the simplest answer is to give it tuples. So you can simply 
make everything a tuple:

tdata = sc.parallelize([("a",),('b',),("c",)])
df = spark.createDataFrame(tdata)

A slightly nicer way to do this is to make a genuine Spark "Row" type.

from pyspark.sql import Row
rdd = sc.parallelize(['a','b','c'])
df = rdd.map(Row).toDF()
 df.show()
+---+
| _1|
+---+
|  a|
|  b|
|  c|
+---+

tdata = sc.parallelize( ["a","b","c"] )
Error when creating DF.



Why aren't we using DataFrames much today? 

For one, this aforementioned attention to types would clutter up our examples. But, that is not the 
important reason.

It is important to realize that RDDs are not just Pandas DataFrames or SQL tables. Many of my graduate 
students, with previous SQL experience, attempt to use Spark by immediately creating DataFrames and 
just doing what they would do with any relational database. But, Spark has

• Transforms and Actions

• Explicit and efficient mapping and reduction operations

which enable great scalability and should not be overlooked.

But, DataFrames are very sensible and efficient and a core part of Spark. So don't shy away from using 
them. They may well become your default API for most tasks.



SQL Is Its Own Topic

Working with relationally organized tabular data is its own field, and the canonical way to do it is to use SQL (which is 
an ISO standard) and interoperates with everything.

The heart of SQL data manipulation is the join, but there are other important tools like GroupBy as well as lots of 
extensions like pivot, unpivot (melt).

Much of the scalability and optimization revolves around the appropriate selection of keys, and an SQL engine can 
accelerate queries by orders of magnitude over the naïve approach that simple databases like Pandas use. Spark has a 
very good SQL engine.

Teaching SQL is often a semester long course, but we must limit ourselves to 
this brief introduction here.

I will say that I manage to get my graduate students up to reasonable 
proficiency in a handful of classes. So, don't hesitate to dive in on your own.



Data Scientist  vs.  Data-Proficient Scientist

This is an appropriate place to define our data science goals, now that we have some context.

If you are calling yourself a  DATA SCIENTIST  you might want to be fluent with all of these terms and 
their specific implementations in these three dialects (Pandas, SQL, Spark).

If you are a data-proficient scientist, you may well get by just being familiar with the options and then asking 
yourself “how to I get this data into that form?” If it takes you a few minutes and a quick google (or ChatGPT), 
there is no shame. At least I hope not!

BTW, in Pandas I often stumble there in the less direct way (maybe a few groupbys) which is acceptable with 
small data. With large data you often can't afford this cavalier attitude and want to leverage the Spark SQL 
optimizer.



Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of 
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy 
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel 
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

• every RDD could be many TB in size

• every transform could use many thousands of cores and TB of memory

• every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You 
are learning how to cope with Big Data.



Optimizations
We said one of the advantages of Spark is that we can control things for better 
performance. There are a multitude of optimization, performance, tuning and 
programmatic features to enable better control. We quickly look at a few of the most 
important.

• Persistence

• Partitioning

• Parallel Programming Capabilities

• Performance and Debugging Tools



Persistence
• Lazy evaluation implies by default that all the RDD dependencies will be computed when we call an action on that 

RDD.

• If we intend to use that data multiple times (say we are filtering some log, then dumping the results, but we will 
analyze it further) we can tell Spark to persist the data.

• We can specify different levels of persistence: MEMORY_ONLY, MEMORY_ONLY_SER, MEMORY_AND_DISK, 
MEMORY_AND_DISK_SER, DISK_ONLY

>>> lines_rdd = sc.textFile("nasa_19950801.tsv")
>>> stanfordLines_rdd = lines.filter(lambda line: "stanford" in line)
>>> stanfordLines_rdd.persist(StorageLevel.MEMORY_AND_DISK)
>>> stanfordLines_rdd.count()
47

>>> stanfordLines_rdd.first(1)
['glim.stanford.edu\t-\t807258394\tGET\t/shuttle/…/orbiters-logo.gif\t200\t1932\t\t']
.
.
.
>>> stanfordLines.unpersist()

Do before

first action.

Actions

Otherwise will just 

get evicted when 

out of memory 

(which is fine).



Partitions
• Spark distributes the data of your RDDs across its resources.  It tries to do some 

obvious things.

• With key/value pairs we can help keep that data grouped efficiently.

• We can create custom partitioners that beat the default (which is probably a hash or 
maybe range).

• Use persist() if you have partitioned your data in some smart way.  Otherwise it will 
keep getting re-partitioned.



Parallel Programming Features
Spark has several parallel programming features that make it easier and more efficient to do operations in parallel in a more explicit way.

Accumulators are variables that allow many copies of a variable to exist on the separate worker nodes. 

It is also possible to have replicated data that we would like all the workers to have access to.  Perhaps a lookup table of IP addresses to 
country codes so that each worker can transform or filter on such information.  Maybe we want to exclude all non-US IP entries in our logs.  
You might think of ways you could do this just by passing variables, but they would likely be expensive in actual operation (usually requiring 
multiple sends). The solution in Spark is to send an (immutable, read only) broadcast variable

Accumulators

log = sc.textFile(“logs”)
blanks = sc.accumlator(0)

def tokenizeLog(line)
 global blanks      # write-only variable
 if (line ==“”)
  blanks += 1
 return line.split(“ “)

entries = log.flatMap(tokenizeLog)
entries.saveAsTextFile(“parsedlogs.txt”)
print “Blank entries: %d” blanks.value

Broadcast Variables

log = sc.textFile(“log.txt”)

IPtable = sc.broadcast(loadIPTable())

def countryFilter(IPentry, IPtable)
 return (IPentry.prefix() in IPTable)
USentries = log.filter(countryFilter)



Performance & Debugging

We will give unfortunately short shrift to performance and debugging, which are both 
important.  Mostly, this is because they are very configuration and application 
dependent.

Here are a few things to at least be aware of:

• SparkConf() class.  A lot of options can be tweaked here.

• Spark Web UI.  A very friendly way to explore all of these issues.



IO Formats
Spark has an impressive, and growing, list of input/output formats it supports.  Some important 
ones:

• Text
• CSV
• SQL type Query/Load

• JSON (can infer schema)
• Parquet
• Hive
• XML
• Sequence (Hadoopy key/value)
• Databases: JDBC, Cassandra, HBase, MongoDB, etc.

• Compression (gzip…)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...



Spark Streaming

Spark addresses the need for streaming processing of data with a API that divides the 
data into batches, which are then processed as RDDs.

There are features to enable:

• Fast recovery from failures or timeouts
• Load balancing
• Integration with static data and interactive queries
• Integration with other components (SQL, Machine Learning)

15% of the "global datasphere"  
(quantification of the amount of data 
created, captured, and replicated across 
the world) is currently real-time. That 
number is growing quickly both in 
absolute terms and as a percentage.



Other Scalable Alternatives:   Dask

Of the many alternatives to play with data on 
your laptop, there are only a few that aspire to 
scale up to big data. The only one, besides Spark, 
that seems to have any traction is Dask.

Numpy like operations

import dask.array as da
a = da.random.random(size=(10000, 10000),
                     chunks=(1000, 1000))
a + a.T - a.mean(axis=0)

Dataframes implement Pandas

import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*.csv')
df.groupby(df.account_id).balance.sum()

Pieces of Scikit-Learn

from dask_ml.linear_model import \ 
LogisticRegression
lr = LogisticRegression()
lr.fit(train, test)

It attempts to retain more of the "laptop feel" of 
your toy codes, making for an easier port. The 
tradeoff is that the scalability is a lot more 
mysterious. If it doesn't work - or someone hasn't 
scaled the piece you need - your options are 
limited.

At this time, I'd say it is riskier, but academic 
projects can often entertain more risk than industry.

Drill Down?



Other Scalable Alternatives:   Ray

Ray tries to do it all. Take a look at docs.ray.io to get some idea. Dask on Ray, 
Spark on Ray, PyTorch on Ray, and on the left and example of Spark with 
TensorFlow on Ray.

However, it seems the core philosophy is to run Python in parallel. A much 
better version of the ubiquitous Python Multiprocessing. Often used to run 
something like a parameter search.

Python is awesome for gluing together calls to higher performance languages. 
Like the Scala JVM in Spark. And we will soon see how well it does using the 
(hidden) capabilities of C++ in TensorFlow.

Trying to get scalable efficiency from Python itself has not been a successful 
path to high performance. I am skeptical.

But, people do seem to be using it as framework to combine other frameworks 
to do things like hyperparameter searches in TensorFlow. There are simpler 
ways to do that in general.

Your milage may vary.



[urbanic@r001 ~]$ pyspark
Python 3.7.4 (default, Aug 13 2019, 20:35:49) 
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use 
setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.0.0-preview2
      /_/

Using Python version 3.7.4 (default, Aug 13 2019 20:35:49)
SparkSession available as 'spark'
In [1]: exec(open("./clustering.py").read())
1 5.76807041184e+14                                                             
2 3.73234816206e+14
3 2.13508993715e+14
4 1.38250712993e+14
5 1.2632806251e+14
6 7.97690150116e+13
7 7.14156965883e+13
8 5.7815194802e+13
...
...
...

Run My Programs Or Yours
exec()

If you have another session window open on 
bridge’s login node, you can edit this file, save it 
while you remain in the editor, and then run it again 
in the python shell window with exec(...).

You do not need this second session to be on a 
compute node. Do not start another interactive 
session.
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