Parallel Computing & Accelerators

John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

Purpose of this talk

This is the 50,000 ft. view of the parallel computing landscape. We want to orient you a bit before parachuting you down into the trenches to deal with OpenACC. The plan is that you walk away with a knowledge of not just OpenACC, but also where it fits into the world of High Performance Computing.

FLOPS we need: Climate change analysis

Simulations

- Cloud resolution, quantifying uncertainty, understanding tipping points, etc., will drive climate to exascale platforms
- New math, models, and systems support will be needed

Extreme data

- "Reanalysis" projects need 100× more computing to analyze observations
- Machine learning and other analytics are needed today for petabyte data sets
- Combined simulation/observation will empower policy makers and scientists

Exascale combustion simulations

- Goal: 50% improvement in engine efficiency
- Center for Exascale Simulation of Combustion in Turbulence (ExaCT)
 - Combines M&S and experimentation
 - Uses new algorithms, programming models, and computer science

Courtesy Horst Simon, LBNL

The list is long, and growing.

- Molecular-scale Processes: atmospheric aerosol simulations
- AI-Enhanced Science: predicting disruptions in tokomak fusion reactors
- Hypersonic Flight
- Modeling Thermonuclear X-ray Bursts: 3D simulations of a neutron star surface or supernovae
- Quantum Materials Engineering: electrical conductivity photovoltaic and plasmonic devices
- Physics of Fundamental Particles: mass estimates of the bottom quark
- Digital Cells

And many of you doubtless brought your own immediate research concerns. Great!

Welcome to The Exascale Era!

exa = 10¹⁸ = 1,000,000,000,000,000,000 = quintillion

64-bit precision floating point operations per second

There may also be a Chinese machine, OceanLight, or 3letter-agency machines on the scene. Copyrighted Material

COMPUTATIONAL PHYSICS

Revised and expanded

in very little time. Performing a billion operations, on the other hand, could take minutes or hours, though it's still possible provided you are patient. Performing a trillion operations, however, will basically take forever. So a fair rule of thumb is that the calculations we can perform on a computer are ones that can be done with *about a billion operations or less*.

Mark Newman

Where are those 10 or 12 orders of magnitude?

How do we get there from here?

BTW, that's a bigger gap than

VS.

IBM 709 12 kiloflops

Moore's Law abandoned serial programming around 2004

Courtesy Liberty Computer Architecture Research Group

But Moore's Law is only beginning to stumble now.

Intel process technology capabilities

0nm	65nm	15nm					
		451111	32nm	22nm	14nm	10nm	7nm
2	4	8	16	32	64	128	256
	2	2 4	2 4 8	2 4 8 16	2 4 8 16 32	2 4 8 16 32 64	2 4 8 16 32 64 128

Transistor for 90nm Process

Source: Intel

Influenza Virus Source: CDC

And at end of day we keep using getting more transistors.

That Power and Clock Inflection Point in 2004... didn't get better.

Fun fact: At 100+ Watts and <1V, currents are beginning to exceed 100A at the point of toact.

Courtesy Horst Simon, LBNL

Not a new problem, just a new scale...

Cray-2 with cooling tower in foreground, circa 1985

And how to get more performance from more transistors with the same power.

Parallel Computing

One woman can make a baby in 9 months.

Can 9 women make a baby in 1 month?

But 9 women can make 9 babies in 9 months.

First two bullets are Brook's Law. From *The Mythical Man-Month*.

A must-read for serious project programmers that includes many other classics such as: "What one programmer can do in one month, two programmers can do in two months."

Prototypical Application: Serial Weather Model

First Parallel Weather Modeling Algorithm: Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model: Shared Memory (OpenMP)

Weather Model: Distributed Memory (MPI)

call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)

call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)

call MPI_Barrier(MPI_COMM_WORLD, errcode)

50 meteorologists using a telegraph.

Weather Model: Accelerator (OpenACC)

1 meteorologists coordinating 1000 math savants using tin cans and a string.

The pieces fit like this...

Top 10 Systems as of June 2024

#	Computer	Site	Manufacturer	CPU Interconnect [<i>Accelerator</i>]	Cores	Rmax (Pflops)	Rpeak (Pflops)	Power (MW)
1	Frontier	Oak Ridge National Laboratory United States	HPE	AMD EPYC 64C 2GHz Slingshot-11 AMD Instinct MI250X	8,699,904	1194	1692	22.7
2	Aurora	Argonne National Laboratory United States	НРЕ	Intel Xeon Max 9470 52C 2.4GHz Slingshot-11 Intel Data Center GPU Max	4,742,808	585	1059	24.6
3	Eagle	Microsoft United States	Microsoft	Intel Xeon 8480C 48C 2GHz Infiniband NDR NVIDIA H100	1,123,200	561	846	
4	Fugaku	RIKEN Center for Computational Science Japan	Fujitsu	ARM 8.2A+ 48C 2.2GHz Torus Fusion Interconnect	7,630,072	442	537	29.9
5	LUMI	EuroHPC Finland	HPE	AMD EPYC 64C 2GHz Slingshot-11 AMD Instinct MI250X	2,752,704	379	531	7.1
6	Leonardo	EuroHPC Italy	Atos	Intel Xeon 8358 32C 2.6GHz Infiniband HDR NVIDIA A100	1,824,768	238	304	7.4
7	Summit	Oak Ridge National Laboratory United States	IBM	Power9 22C 3.0 GHz Dual-rail Infiniband EDR <i>NVIDIA V100</i>	2,414,592	148	200	10.1
8	MareNostrum 5	EuroHPC/BSC Spain	EVIDEN	Intel Xeon 8460Y+ 40C 2.3GHz, Infiniband NDR200 NVIDIA H100 64GB	680,960	138	256	2.5
9	Eos NVIDIA DGX SuperPOD	500 TX-Green2 - 2.4GHz, 25G	PowerEdge C6420 Ethernet, ACTION	, Xeon Platinum 8260 24C	43,200 2	.02 53.08	188	
10	Sierra	MIT Lincoln l United States	_aboratory Superco s	omputing Center			125	7.4

The word is *Heterogeneous*

And it's not just supercomputers. It's on your desk, and in your phone.

How much of this can you program?

We can do better. We have a role model.

- We hope to "simulate" a human brain in real time on one of these Exascale platforms with about 1 - 10 Exaflop/s and 4 PB of memory
- These newest Exascale computers use 20+ MW
- The human brain runs at 20W
- Our brain is a million times more power efficient!

Why you should be (extra) motivated.

- This parallel computing thing is no fad.
- The laws of physics are drawing this roadmap.
- If you get on board (the right bus), you can ride this trend for a long, exciting trip.

Let's learn how to use these things!