
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2023

The Bigger Picture

Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

• Fully Connected (FC)
• Convolutional (CNN)
• Residual (ResNet) [Feed forward]
• Recurrent (RNN), [Feedback, but has vanishing gradients so...]
• Long Short Term Memory (LSTM)
• Transformer (Attention based)
• Bidirectional RNN
• Restricted Boltzmann Machine
•
•

Several of these are particularly common...

Wikipedia Commons

Residual Neural Nets

• Helps preserve reasonable gradients for very deep networks
• Very effective at imagery
• Used by AlphaGo Zero (40 residual CNN layers) in place of previous

complex dual network
• 100s of layers common, Pushing 1000

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful.
How do we reconcile these two phenomena? One, very successful, method is to use some feedforward.

Haven't all of our Keras networks been built as strict layers in a sequential method? Indeed, but Keras supports a
functional API that provides the ability to define network that branch in other ways (multiple inputs or multiple
outputs, or layers with multiple inputs or multiple outputs, or any non-linear topology such as here). It is easy and
here (https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat
experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates
the concept beautifully.

Courtesy: Chris Olah

#Example: input 3-channel 256x256 image
x = Input(shape=(256, 256, 3))
y = Conv2D(3, (3, 3))(x)
z = keras.layers.add([x, y])

https://www.tensorflow.org/guide/keras/functional

Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most
effective techniques in deep learning.

Courtesy: Chris Olah

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character
recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true -
text.

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoatnt tihng is taht the frist and lsat ltteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".

LSTMs

Wikipedia CommonsWikipedia Commons

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiter and
Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware. I
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

Wikipedia Commons

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTM takes care of the
details for us (but has a lot of options).

The Keras folks even provide us with an MNIST version (https://keras.io/examples/mnist_hierarchical_rnn/), although I
think it is confusing as we are now killing a fly with a bazooka.

I recommend https://keras.io/examples/conv_lstm/, which uses network is used to predict the next frame of an artificially
generated movie which contains moving squares. A much more natural fit.

https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/

Bi-directional LSTMs

Wikipedia CommonsWikipedia Commons

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

Wikipedia Commons

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(encoder.vocab_size, 64),
 tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)),
 tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
 tf.keras.layers.Dense(64, activation='relu'),
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(1)
])

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious:

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the Keras IMDB
movie review sentiment analysis example (https://www.tensorflow.org/tutorials/text/text_classification_rnn).

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you
interested in natural language processing, and related to our running theme of dimensionality reduction. To
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is
represented by a 64 dimensional vector.

Transformers

Wikipedia CommonsWikipedia Commons

We have strayed solidly into the realm of Natural Language Processing (NLP). The current state of the art here, which has
largely subsumed these earlier techniques, are Transformer, or self-attention based networks. These form the basis of
ChatGPT and similar applications.

The seminal implementation goes all the way back to 2017 with “Attention Is All You Need,” Vaswani et al.

Wikipedia Commons

While we use the basic building blocks you have learned, the overall
architectures have a lot of parts.

The idea is to process the kind of sequential data we have been discussing,
but with the ability to learn the relative important of different, perhaps
distant, tokens. In other words, pay more attention to some relationships
than others.

While these designs have proven surprisingly powerful in NLP (emergent!
emergent!), they have yet to find a central use in scientific problems.

Given the incredible effort and funding invested in these, it seems inevitable
that the scientific community will find some way to leverage this capability.

Latest News.

Tesla has recently moved away

from transformers to a diffusion

based approach.

Autoencoder

Input Layer Hidden Layers Output Layer

Autoencoder

Input Layer Output Layer

Latent Features

Autoencoder

Input Layer Output Layer

Latent Features

This autoencoder concept is very
foundational.

It can be used for powerful
generational networks by controlling
the latent space as in variational
autoencoders.

Deepfake Training

Latent Features

Alice

Bob

Deepfake At Work

Latent Features

Alice
Bob

Zao Does DiCaprio
The Chinese app Zao did the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265

https://twitter.com/AllanXia/status/1168049059413643265

Discriminative vs. Generative
Discriminative models classify things, and need only know which side of the hyper-plane the instance lies on.
Generative models need to understand the distribution to generate new instances.

Discriminative Generative

Discriminative models need only capture the conditional probability of digit Y, given image X: P(Y|X). Generative
models must understand the joint probability P(X,Y).

Generative in Action

Wikipedia CommonsWikipedia Commons

Stable Diffusion, DALL-E, Midjourney and other such applications are built upon this idea.

For example, Stable Diffusion was trained on pairs of images and captions from Common Crawl data scraped from the
web, where 5 billion image-text pairs were classified.

Wikipedia Commons

In a clever mashup of ideas we have discussed, this
network attempts to de-noise images in conjunction
with text prompts, resulting in some amazing
"comprehension".

Stable Diffusion's code and model weights have been
released, and it runs on consumer GPUs with 8 GB of
VRAM!

Generative Networks

Architectures

AlexNet

With the layers we have discussed, we can build countless different networks (and use TensorFlow to define them).
Indeed, you may get the feel that the current "building block" is actually a functional network.

Wikipedia Commons

GoogLeNet / Inception

Generative Adversarial Network
(GAN)

YOLO (You Only Look Once)

Mask R-CNN

Images from original papers

Some Taxonomies

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

• Classification (What we did)
• Localization (Where is the digit?)
• Detection (Are there digits? How many?)
• Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some
other building blocks.

As you learn more about machine learning, you will see various ways to categorize the algorithms or tasks or general
approaches to doing something useful. Don't believe any of them are either comprehensive or canonical. They are just
useful ways to keep track of the explosion of options in this space.

Tasks

Classification What we've been doing.

Regression Return a value. Stock price.

Transcription Convert between representations. OCR, speech recognition.

Synthesis Create new input examples. Speech synthesizer. Lots of science these days!

Translation Like the word says. Google Translate.

Segmentation Return a relabeled input vector. Tumor detection.

Denoising Return uncorrupted example. Video game ray tracing.

Again, neither comprehensive nor definitive. The definitions vary from one author to the next, and the list grows all
the time.

Learning Approaches
Supervised Learning
 How you learned colors.
 What we have been doing just now.
 Used for: image recognition, tumor identification, segmentation.
 Requires labeled data. Lots of it. Augmenting helps.
 Essence: Learning to map one vector to another, given enough examples of the mapping.

Unsupervised Learning
 (Maybe) how you learned to see.
 What we did earlier with clustering and our recommender, and Deepfake.
 Find patterns in data, compress data into model, find reducible representation of data.
 Used for: Learning from unlabeled data.
 Might be a great way to bootstrap Supervised Learning (train an autoencoder and build from those
 weights).

Reinforcement Learning
 How you learned to walk.
 Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
 Used for: Go (AlphaGo Zero), robot motion, video games.
 Don't just read data, but interact with it!

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

Fuzzy Line

AI Based Simulation?

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 – Published 12 January 2018

A wise man once (not that long ago) told me "John, I don't
need a neural net to rediscover conservation of energy."

Physics Informed
Neural Networks

Wikipedia

They are also no magic bullet. We now have two competing loss
functions, for the data and the physics. And if the gradients in our
network now have physical significance, we have to be more rigorous in
our treatment of them. No ReLU activation functions, but instead
something like the Gaussian Error Linear Unit (GELU).

But maybe we can include our a priori knowledge.
These types of networks (PINNs) are rapidly gaining
interest in the world of physical modeling.

AI Based Simulation Is Here To Stay

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning
Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, Linfeng Zhang

2020 ACM Gordon Bell Prize Winner

“We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab
initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly
optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-
single/half precision.

Try It Yourself

https://github.com/gpuhackathons-
org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_

notebook/CFD/Start_Here.ipynb

NVIDIA's GPU Bootcamp materials contain a great example of this type of work. The premise is to learn a mapping from
boundary conditions to steady state fluid flow. The tutorial works through several different models, starting with a Fully
Connected Network, then using a CNN and finally introducing a more advance Residual Network approach. You should
be able to jump right in with what we have learned here.

https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb
https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb
https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb

From recent research paper to CMU physics undergraduate problem.
Newton vs. the machine

Has Deep Learning left any room for other approaches?

AI
ML

DL
nee Neural Nets

Big

 Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL

“Theoretician’s Nightmare” and Other Perspectives

The above is paraphrasing Yann LeCun, the godfather of Deep Learning.

If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better, as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon groundbreaking papers of a few years
ago.

The previously mentioned Christopher Olah has this rather useful summation: "People sometimes complain: 'Neural
networks are so hard to understand! Why can’t we use understandable models, like SVMs?' Well, you understand
SVMs, and you don’t understand visual pattern recognition. If SVMs could solve visual pattern recognition, you would
understand it. Therefore, SVMs are not capable of this, nor is any other model you can really understand."

My own humble observation: Deep Learning looks a lot like late 19th century chemistry. There is a weak theoretical
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more
perspiration than inspiration."

Most meta.
With some advice for you!

Lazy Scientist's Survey of the Field
Kaggle Challenge
The benchmark driven nature of deep learning
research, and its competitive consequences, have
found a nexus at Kaggle.com. There you can find
over 20,000 datasets:

and competitions:

XGBoost?

Trees
(How much of our earlier learning can we apply here?)

XGBoost is the latest, and most popular, evolution of the Decision Tree approach. Let's say we want to predict is some
given person is likely to be a buyer of a certain car model:

Trees are desirable in that they are non-linear, but still analytically tractable, and can do both regression and classification.

income > 80 income > 50

gender=m

age > 40

0.8 -0.2 0.7 0.3

Y

Y

YY

N

NN

N

0.1 0.2

Gradient Boosted Trees
Er

ro
r

Trees (iterations)

+

+

++

++

Remember This?

XGBoost

A very cool interactive application to
explore these concepts, and try various
hyperparameters, was done by Alex
Rogozhnikov and can be found at:

http://arogozhnikov.github.io/2016/07/05/
gradient_boosting_playground.html

If you want to understand XGBoost in
detail, you can find the original paper at:

https://arxiv.org/pdf/1603.02754.pdf

An in-depth, but still beginner-friendly,
video from StatsQuest can be found at:

https://www.youtube.com/watch?v=GrJP9
FLV3FE

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://arxiv.org/pdf/1603.02754.pdf
https://www.youtube.com/watch?v=GrJP9FLV3FE
https://www.youtube.com/watch?v=GrJP9FLV3FE

XGBoost in Particular
There are various implementations of gradient boosted trees. XGBoost combines several important innovations:

• Parallelizes well both across cores and nodes
• Clever cache optimization
• Works well with missing data

The end result is an efficient algorithm that works well enough with non-optimal hyperparameters the beginners can often
make quick progress.

The scikit-learn version is probably the most popular, but there is a Spark version
(https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j_spark_tutorial.html), and if you want a deeper dive, NDVIDIA
has this pretty nice taxi fare regression model that uses GPUs with Spark and does a hyperparameter search. Note that I
have not tried these myself:

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/

TensorFlow has a boosted tree API along with a nice walkthrough example in the docs:

https://www.tensorflow.org/tutorials/estimator/boosted_trees

However, note that this is not the XGBoost version (yet).

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/
https://www.tensorflow.org/tutorials/estimator/boosted_trees

Other Toolboxes
You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

TensorFlow Neural Nets Python, C++ Very popular.

PyTorch Neural Nets Python (Lua) Also very popular. Used to be very
different with it's dynamic graphs
and eager execution, but lacked
simple layers. Now fairly similar in
approach.

Spark MLLIB Classification, Regression,
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in
serious applications. Lots of plugins
to DL frameworks: TensorFrames,
TF on Spark, CaffeOnSpark, Keras
Elephas.

Scikit-Learn Classification, Regression,
Clustering

Python Integrates well with TF to create
powerful workflows.

Keras Neural Nets Python (on top of TF, Theano) Now completely absorbed into TF.

Jax Neural Nets Python Latest DeepMind (part of Google)
framework. Missing pieces, but
getting there. Similar to TF & PT.

A note about hardware.

Inference Is Fast

Perceptual Labs

iPhone Demo

Also building their own training chips.
Put into tiles, into Trays, into Cabinets to create Dojo.

Everyone Doing Specialized Hardware

NVIDIA
Turing/Hopper
Tensor Cores

4x4 matrix mixed precision matrix
multiply machines. 125 FP16
TFlops.

Google
TPU

Cloud TPU v3
420 teraflops
128 GB HBM.

v4 is ~2X
performance.

Intel
Loihi

(soon Loihi 2 at around 10X
size and performance)

128-core, 130,000 artificial
neurons, and 130 million
synapses + 3 managing
Lakemont cores.

Also new AVX512_VNNI
(Vector Neural Network)
instructions like an FMA
instruction for 8-bit
multiplies with 32-bit
accumulates on new
processors.

Amazon
Inferentia2
Trainium

Inferentia for inference and
Trainium for training. Use
standard TensorFlow and
Torch in their EC2 Cloud.

Everyone Doing Specialized Hardware

Meta
MTIA

Scrapped first generation
inference chip and now working
on a training capable chip.

Microsoft
Athena

Apparently
undergoing testing

now.

Neuromorphic
IBM, ...

At PSC!

• 850,000 Sparse Linear
Algebra Compute Cores

• 2.6 trillion transistors

• 20 PB/s aggregate
memory bandwidth

• 220 Pb/s interconnect
bandwidth

Brain only uses
20W.

Analog, pruning,
spiking, lots of
new directions.

We are also
continuously
learning how little
we know about
how biological
mechanisms work.

?

Cerebras
CS-2

Demos
Ray-traced videogames! Recurrent CNN.

http://research.nvidia.com/sites/default/files/publications/dnn_denoise_author.pdf

Style vs. Content
Deep Dream Generatorhttps://deepdreamgenerator.com/feed

Keras example at
https://keras.io/examples/deep_dream/

Loads a pre-trained ImageNet model!
This is a valuable capability.

Cool real-time Zelda demo:

https://www.youtube.com/watch?v=wou1dOlg2Fk

https://deepdreamgenerator.com/feed
https://keras.io/examples/deep_dream/

Demos
Style vs. Content: A little more subtle

Grab it at https://github.com/NVIDIA/FastPhotoStyle

Tomorrow
If Only...

Nice video at
http://stylegan.xyz/video

What is reality?

Where did they get their hyperparameters?

...

...

Read, read, read!

One of our major goals is to leave you with the ability to understand
many of the latest publications in applied, scientific AI.

Of course, 2 days is not enough for you to become an expert, but you
might be surprised how much of the literature you can understand.
You should be well-positioned to fill in the gaps.

If you want to test your knowledge, this "state of the field" lecture by
the foremost pioneers of deep learning is an excellent summation of
the current leading edge. It is targeted at practitioners of the art, so
don't feel intimidated by any unknown references. But if you do get
the gist of it, congratulations, you are holding your own with current
researchers.

https://dl.acm.org/doi/pdf/10.1145/3448250

A little more about

GPT-4

• 99 pages!

• "Given both the competitive landscape and the
safety implications of large-scale models like GPT-4,
this report contains no further details about the
architecture (including model size), hardware,
training compute, dataset construction, training
method, or similar."

A little GPT-4

GPT-4 isn't cheap. This is the trend.

What can't it do?

Now with vision and
spooky reasoning!

Why you really care...

Can this code?

From this different paper.

Impressive results
on standard exam

benchmarks.

Note how they test
against unseen

examples.

It can take instructions at a
very high level and emit
code in many different

languages.

It also responds to feedback
in the form of error

messages (not shown here)
to fix or refine results.

And we aren't just talking
code snippets. Here is a

complete game.

The truest meta: GPT-4 writing DL
code. Note that this is not a pre-
existing code that it has learned.

This fairly direct analysis does
better than many programmers I
come across.

	Slide 1
	Slide 2: Building Blocks
	Slide 3: Residual Neural Nets
	Slide 4: Recurrent Networks (RNNs)
	Slide 5: LSTMs
	Slide 6: Bi-directional LSTMs
	Slide 7: Transformers
	Slide 8: Autoencoder
	Slide 9: Autoencoder
	Slide 10: Autoencoder
	Slide 11: Deepfake Training
	Slide 12: Deepfake At Work
	Slide 13: Zao Does DiCaprio
	Slide 14: Discriminative vs. Generative
	Slide 15: Generative in Action
	Slide 16: Generative Networks
	Slide 17: Architectures
	Slide 18: Some Taxonomies
	Slide 19: Tasks
	Slide 20: Learning Approaches
	Slide 21: AI Based Simulation?
	Slide 22: Physics Informed Neural Networks
	Slide 23: AI Based Simulation Is Here To Stay
	Slide 24: Try It Yourself
	Slide 25: From recent research paper to CMU physics undergraduate problem. Newton vs. the machine
	Slide 26: Has Deep Learning left any room for other approaches?
	Slide 27: “Theoretician’s Nightmare” and Other Perspectives
	Slide 28: Most meta. With some advice for you!
	Slide 29: Lazy Scientist's Survey of the Field
	Slide 30: Trees (How much of our earlier learning can we apply here?)
	Slide 31: Gradient Boosted Trees
	Slide 32: Remember This?
	Slide 33: XGBoost
	Slide 34: XGBoost in Particular
	Slide 35: Other Toolboxes
	Slide 36: A note about hardware.
	Slide 37: Inference Is Fast
	Slide 38: Everyone Doing Specialized Hardware
	Slide 39: Everyone Doing Specialized Hardware
	Slide 40: Demos
	Slide 41: Style vs. Content Deep Dream Generator
	Slide 42: Demos Style vs. Content: A little more subtle
	Slide 43: Tomorrow If Only...
	Slide 44: What is reality?
	Slide 45: Where did they get their hyperparameters?
	Slide 46: Read, read, read!
	Slide 47: A little more about GPT-4
	Slide 48: A little GPT-4
	Slide 49: GPT-4 isn't cheap. This is the trend.
	Slide 50: What can't it do?
	Slide 51: Now with vision and spooky reasoning!
	Slide 52: Why you really care... Can this code?
	Slide 53: From this different paper.
	Slide 54: Impressive results on standard exam benchmarks. Note how they test against unseen examples.
	Slide 55: It can take instructions at a very high level and emit code in many different languages. It also responds to feedback in the form of error messages (not shown here) to fix or refine results.
	Slide 56: And we aren't just talking code snippets. Here is a complete game.
	Slide 57: The truest meta: GPT-4 writing DL code. Note that this is not a pre-existing code that it has learned.
	Slide 58: This fairly direct analysis does better than many programmers I come across.

