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Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

•  Fully Connected  (FC)
•  Convolutional  (CNN)
•  Residual   (ResNet) [Feed forward]
•  Recurrent   (RNN), [Feedback, but has vanishing gradients so...]
•  Long Short Term Memory (LSTM)
•  Transformer  (Attention based)
•  Bidirectional RNN 
•  Restricted Boltzmann Machine
•     
•     

Several of these are particularly common...

Wikipedia Commons



Residual Neural Nets

• Helps preserve reasonable gradients for very deep networks
• Very effective at imagery
• Used by AlphaGo Zero (40 residual CNN layers) in place of previous 

complex dual network
• 100s of layers common, Pushing 1000

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful. 
How do we reconcile these two phenomena? One, very successful, method is to use some feedforward.

Haven't all of our Keras networks been built as strict layers in a sequential method? Indeed, but Keras supports a 
functional API that provides the ability to define network that branch in other ways (multiple inputs or multiple 
outputs, or layers with multiple inputs or multiple outputs, or any non-linear topology such as here). It is easy and 
here (https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat 
experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates 
the concept beautifully.

Courtesy: Chris Olah

#Example: input 3-channel 256x256 image
x = Input(shape=(256, 256, 3))
y = Conv2D(3, (3, 3))(x)
z = keras.layers.add([x, y])

https://www.tensorflow.org/guide/keras/functional


Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most 
effective techniques in deep learning.

Courtesy: Chris Olah

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character 
recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true - 
text.

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny 
iprmoatnt tihng is taht the frist and lsat ltteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed 
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network 
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".



LSTMs

Wikipedia CommonsWikipedia Commons

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into 
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiter and 
Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware.  I 
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

Wikipedia Commons

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTM takes care of the 
details for us (but has a lot of options).

The Keras folks even provide us with an MNIST version (https://keras.io/examples/mnist_hierarchical_rnn/), although I 
think it is confusing as we are now killing a fly with a bazooka.

I recommend https://keras.io/examples/conv_lstm/, which uses network is used to predict the next frame of an artificially 
generated movie which contains moving squares. A much more natural fit.
   

https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/


Bi-directional LSTMs

Wikipedia CommonsWikipedia Commons

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

Wikipedia Commons

model = tf.keras.Sequential([
    tf.keras.layers.Embedding(encoder.vocab_size, 64),
    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64,  return_sequences=True)),
    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(1)
])

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious:

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the Keras IMDB 
movie review sentiment analysis example (https://www.tensorflow.org/tutorials/text/text_classification_rnn). 

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you 
interested in natural language processing, and related to our running theme of dimensionality reduction. To 
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is 
represented by a 64 dimensional vector.



Transformers
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We have strayed solidly into the realm of Natural Language Processing (NLP). The current state of the art here, which has 
largely subsumed these earlier techniques, are Transformer, or self-attention based networks. These form the basis of 
ChatGPT and similar applications.

The seminal implementation goes all the way back to 2017 with “Attention Is All You Need,” Vaswani et al. 

Wikipedia Commons

While we use the basic building blocks you have learned, the overall 
architectures have a lot of parts.

The idea is to process the kind of sequential data we have been discussing, 
but with the ability to learn the relative important of different, perhaps 
distant, tokens. In other words, pay more attention to some relationships 
than others.

While these designs have proven surprisingly powerful in NLP (emergent! 
emergent!), they have yet to find a central use in scientific problems.

Given the incredible effort and funding invested in these, it seems inevitable 
that the scientific community will find some way to leverage this capability.

Latest News.

Tesla has recently moved away 

from transformers to a diffusion 

based approach.



Autoencoder

Input Layer Hidden Layers Output Layer



Autoencoder

Input Layer Output Layer

Latent Features



Autoencoder

Input Layer Output Layer

Latent Features

This autoencoder concept is very 
foundational.

It can be used for powerful 
generational networks by controlling 
the latent space as in variational 
autoencoders.



Deepfake Training

Latent Features

Alice

Bob



Deepfake At Work

Latent Features

Alice
Bob



Zao Does DiCaprio
The Chinese app Zao did the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265

https://twitter.com/AllanXia/status/1168049059413643265


Discriminative vs. Generative
Discriminative models classify things, and need only know which side of the hyper-plane the instance lies on. 
Generative models need to understand the distribution to generate new instances.

Discriminative Generative

Discriminative models need only capture the conditional probability of digit Y, given image X: P(Y|X). Generative 
models must understand the joint probability P(X,Y).



Generative in Action

Wikipedia CommonsWikipedia Commons

Stable Diffusion, DALL-E, Midjourney and other such applications are built upon this idea.

For example, Stable Diffusion was trained on pairs of images and captions from Common Crawl data scraped from the 
web, where 5 billion image-text pairs were classified.

Wikipedia Commons

In a clever mashup of ideas we have discussed, this 
network attempts to de-noise images in conjunction 
with text prompts, resulting in some amazing 
"comprehension".

Stable Diffusion's code and model weights have been 
released, and it runs on consumer GPUs with 8 GB of 
VRAM!



Generative Networks



Architectures

AlexNet

With the layers we have discussed, we can build countless different networks (and use TensorFlow to define them). 
Indeed, you may get the feel that the current "building block" is actually a functional network.

Wikipedia Commons

GoogLeNet / Inception

Generative Adversarial Network 
(GAN)

YOLO (You Only Look Once)

Mask R-CNN

Images from original papers



Some Taxonomies

So far we have focused on images, and their classification. You know that deep learning has had success across a wide, 
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

• Classification (What we did)
• Localization (Where is the digit?)
• Detection  (Are there digits? How many?)
• Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some 
other building blocks.

As you learn more about machine learning, you will see various ways to categorize the algorithms or tasks or general 
approaches to doing something useful. Don't believe any of them are either comprehensive or canonical. They are just 
useful ways to keep track of the explosion of options in this space.



Tasks

Classification What we've been doing.

Regression  Return a value. Stock price.

Transcription Convert between representations. OCR, speech recognition.

Synthesis  Create new input examples. Speech synthesizer. Lots of science these days!

Translation  Like the word says. Google Translate.

Segmentation Return a relabeled input vector. Tumor detection.

Denoising  Return uncorrupted example. Video game ray tracing.

Again, neither comprehensive nor definitive. The definitions vary from one author to the next, and the list grows all 
the time.



Learning Approaches
Supervised Learning
 How you learned colors.
 What we have been doing just now.
 Used for: image recognition, tumor identification, segmentation.
 Requires labeled data. Lots of it. Augmenting helps.
 Essence: Learning to map one vector to another, given enough examples of the mapping.

Unsupervised Learning
 (Maybe) how you learned to see.
 What we did earlier with clustering and our recommender, and Deepfake.
 Find patterns in data, compress data into model, find reducible representation of data.
 Used for: Learning from unlabeled data.
 Might be a great way to bootstrap Supervised Learning (train an autoencoder and build from those 
 weights).

Reinforcement Learning
 How you learned to walk.
 Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
 Used for: Go (AlphaGo Zero), robot motion, video games.
 Don't just read data, but interact with it!

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

Fuzzy Line



AI Based Simulation?

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from 
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 – Published 12 January 2018

A wise man once (not that long ago) told me "John, I don't 
need a neural net to rediscover conservation of energy."



Physics Informed 
Neural Networks

Wikipedia

They are also no magic bullet. We now have two competing loss 
functions, for the data and the physics. And if the gradients in our 
network now have physical significance, we have to be more rigorous in 
our treatment of them. No ReLU activation functions, but instead 
something like the Gaussian Error Linear Unit (GELU).

But maybe we can include our a priori knowledge. 
These types of networks (PINNs) are rapidly gaining 
interest in the world of physical modeling.



AI Based Simulation Is Here To Stay

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning
Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, Linfeng Zhang

2020  ACM Gordon Bell Prize Winner

“We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab 
initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly 
optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire 
Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-
single/half precision.



Try It Yourself

https://github.com/gpuhackathons-
org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_

notebook/CFD/Start_Here.ipynb

NVIDIA's GPU Bootcamp materials contain a great example of this type of work. The premise is to learn a mapping from 
boundary conditions to steady state fluid flow. The tutorial works through several different models, starting with a Fully 
Connected Network, then using a CNN and finally introducing a more advance Residual Network approach. You should 
be able to jump right in with what we have learned here.

https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb
https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb
https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb


From recent research paper to CMU physics undergraduate problem.
Newton vs. the machine



Has Deep Learning left any room for other approaches?

AI
ML

DL
nee Neural Nets

Big

  Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL



“Theoretician’s Nightmare” and Other Perspectives

The above is paraphrasing Yann LeCun, the godfather of Deep Learning.

If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical 
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that 
situation isn’t getting better, as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true 
throughout the field. Rarely is the undergraduate researcher so reliant upon groundbreaking papers of a few years 
ago.

The previously mentioned Christopher Olah has this rather useful summation: "People sometimes complain: 'Neural 
networks are so hard to understand! Why can’t we use understandable models, like SVMs?' Well, you understand 
SVMs, and you don’t understand visual pattern recognition. If SVMs could solve visual pattern recognition, you would 
understand it. Therefore, SVMs are not capable of this, nor is any other model you can really understand."

My own humble observation: Deep Learning looks a lot like late 19th century chemistry. There is a weak theoretical 
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more 
perspiration than inspiration."



Most meta.
With some advice for you!



Lazy Scientist's Survey of the Field
Kaggle Challenge
The benchmark driven nature of deep learning 
research, and its competitive consequences, have 
found a nexus at Kaggle.com. There you can find 
over 20,000 datasets:

and competitions:

XGBoost?



Trees
(How much of our earlier learning can we apply here?)

XGBoost is the latest, and most popular, evolution of the Decision Tree approach. Let's say we want to predict is some 
given person is likely to be a buyer of a certain car model: 

Trees are desirable in that they are non-linear, but still analytically tractable, and can do both regression and classification.

income > 80 income > 50
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age > 40
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Gradient Boosted Trees
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Remember This?



XGBoost

A very cool interactive application to 
explore these concepts, and try various 
hyperparameters, was done by Alex 
Rogozhnikov and can be found at:

http://arogozhnikov.github.io/2016/07/05/
gradient_boosting_playground.html

If you want to understand XGBoost in 
detail, you can find the original paper at:

https://arxiv.org/pdf/1603.02754.pdf

An in-depth, but still beginner-friendly, 
video from StatsQuest can be found at:

https://www.youtube.com/watch?v=GrJP9
FLV3FE

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://arxiv.org/pdf/1603.02754.pdf
https://www.youtube.com/watch?v=GrJP9FLV3FE
https://www.youtube.com/watch?v=GrJP9FLV3FE


XGBoost in Particular
There are various implementations of gradient boosted trees. XGBoost combines several important innovations:

• Parallelizes well both across cores and nodes
• Clever cache optimization
• Works well with missing data

The end result is an efficient algorithm that works well enough with non-optimal hyperparameters the beginners can often 
make quick progress.

The scikit-learn version is probably the most popular, but there is a Spark version 
(https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j_spark_tutorial.html), and if you want a deeper dive, NDVIDIA 
has this pretty nice taxi fare regression model that uses GPUs with Spark and does a hyperparameter search. Note that I 
have not tried these myself:

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/

TensorFlow has a boosted tree API along with a nice walkthrough example in the docs:

https://www.tensorflow.org/tutorials/estimator/boosted_trees

However, note that this is not the XGBoost version (yet).

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/
https://www.tensorflow.org/tutorials/estimator/boosted_trees


Other Toolboxes
You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

TensorFlow Neural Nets Python, C++ Very popular.

PyTorch Neural Nets Python (Lua) Also very popular. Used to be very 
different with it's dynamic graphs 
and eager execution, but lacked 
simple layers. Now fairly similar in 
approach.

Spark MLLIB Classification, Regression, 
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in 
serious applications. Lots of plugins 
to DL frameworks: TensorFrames, 
TF on Spark, CaffeOnSpark, Keras
Elephas.

Scikit-Learn Classification, Regression, 
Clustering

Python Integrates well with TF to create 
powerful workflows.

Keras Neural Nets Python (on top of TF, Theano) Now completely absorbed into TF.

Jax Neural Nets Python Latest DeepMind (part of Google) 
framework. Missing pieces, but
getting there. Similar to TF & PT.



A note about hardware.



Inference Is Fast

Perceptual Labs

iPhone Demo

Also building their own training chips.
Put into tiles, into Trays, into Cabinets to create Dojo.



Everyone Doing Specialized Hardware

NVIDIA
Turing/Hopper 
Tensor Cores

4x4 matrix mixed precision matrix 
multiply machines. 125 FP16 
TFlops.

Google
TPU

Cloud TPU v3
420 teraflops
128 GB HBM.

v4 is ~2X 
performance.

Intel
Loihi

(soon Loihi 2 at around 10X 
size and performance)

128-core, 130,000 artificial 
neurons, and 130 million 
synapses + 3 managing 
Lakemont cores.

Also  new AVX512_VNNI 
(Vector Neural Network) 
instructions like an FMA 
instruction for 8-bit 
multiplies with 32-bit 
accumulates on new 
processors. 

Amazon
Inferentia2
Trainium

Inferentia for inference and 
Trainium for training. Use 
standard TensorFlow and 
Torch in their EC2 Cloud.



Everyone Doing Specialized Hardware

Meta
MTIA

Scrapped first generation 
inference chip and now working 
on a training capable chip.

Microsoft
Athena

Apparently 
undergoing testing 

now.

Neuromorphic
IBM, ...

At PSC!

• 850,000 Sparse Linear 
Algebra Compute Cores

• 2.6 trillion transistors

• 20 PB/s aggregate 
memory bandwidth

• 220 Pb/s interconnect 
bandwidth

Brain only uses 
20W.

Analog, pruning, 
spiking, lots of 
new directions.

We are also 
continuously 
learning how little 
we know about 
how biological 
mechanisms work.

?

Cerebras
CS-2



Demos
Ray-traced videogames! Recurrent CNN. 

http://research.nvidia.com/sites/default/files/publications/dnn_denoise_author.pdf



Style vs. Content
Deep Dream Generatorhttps://deepdreamgenerator.com/feed

Keras example at 
https://keras.io/examples/deep_dream/

Loads a pre-trained ImageNet model!
This is a valuable capability.

Cool real-time Zelda demo:

https://www.youtube.com/watch?v=wou1dOlg2Fk

https://deepdreamgenerator.com/feed
https://keras.io/examples/deep_dream/


Demos
Style vs. Content:  A little more subtle

Grab it at  https://github.com/NVIDIA/FastPhotoStyle



Tomorrow
If Only...

Nice video at
http://stylegan.xyz/video 



What is reality?



Where did they get their hyperparameters?

...

...



Read, read, read!

One of our major goals is to leave you with the ability to understand 
many of the latest publications in applied, scientific AI.

Of course, 2 days is not enough for you to become an expert, but you 
might be surprised how much of the literature you can understand. 
You should be well-positioned to fill in the gaps.

If you want to test your knowledge, this "state of the field" lecture by 
the foremost pioneers of deep learning is an excellent summation of 
the current leading edge. It is targeted at practitioners of the art, so 
don't feel intimidated by any unknown references. But if you do get 
the gist of it, congratulations, you are holding your own with current 
researchers.

https://dl.acm.org/doi/pdf/10.1145/3448250



A little more about

GPT-4



• 99 pages!

• "Given both the competitive landscape and the 
safety implications of large-scale models like GPT-4, 
this report contains no further details about the 
architecture (including model size), hardware, 
training compute, dataset construction, training 
method, or similar."

A little GPT-4



GPT-4 isn't cheap. This is the trend.



What can't it do?



Now with vision and
spooky reasoning!



Why you really care...

Can this code?



From this different paper.



Impressive results 
on standard exam 

benchmarks.

Note how they test
against unseen 

examples.



It can take instructions at a 
very high level and emit 
code in many different 

languages.

It also responds to feedback 
in the form of error 

messages (not shown here) 
to fix or refine results.



And we aren't just talking 
code snippets. Here is a 

complete game.



The truest meta:   GPT-4 writing DL 
code. Note that this is not a pre-
existing code that it has learned.



This fairly direct analysis does 
better than many programmers I 
come across.
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