
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2023

Intro To Machine Learning

Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools. The MLlib library
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above
implementations.

There are good example documents for the clustering routine we are using, as well as alternative
clustering algorithms, here:

http://spark.apache.org/docs/latest/mllib-clustering.html

I suggest you use these pages for your Spark work.

http://spark.apache.org/docs/latest/mllib-clustering.html

Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine
learning objectives, sometimes as one part of a pipeline.

Weight

S
iz

e

Coin Sorting

Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let’s fire up
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t.
How hard can it be to count clusters? How many are here?

From 1900 until 1956 humans were
considered to have 48 chromosomes,
instead of 46, based upon the interpretation
of this camera lucida image.

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>

Finding Clusters

Read into RDD

Transform to words and integers

br06% interact
...
r288%
r288% module load spark
r288% pyspark

Make sure you are in the directory with the data file. Otherwise,
Spark is dangerously quiet when you textFile() a file that does not
exist. It is "lazy" and you won't find out that you have missing
data until a later error.

>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[' 664159 550946', ' 665845 557965', ' 597173 575538', ' 618600 551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[['664159', '550946'], ['665845', '557965'], ['597173', '575538'], ['618600', '551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform

Import Kmeans

Finding Clusters

What is the
exact answer?

There are helper algorithms (the
python kneed package) or
alternative metrics, such as the
silhouette coefficient, that you
might consider. None are
definitive. Judgement and
domain knowledge are critical.

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
... model = KMeans.train(rdd3, clusters)
... print (clusters, model.computeCost(rdd3))
...

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14
2 3.43183673951e+14
3 2.23097486536e+14
4 1.64792608443e+14
5 1.19410028576e+14
6 7.97690150116e+13
7 7.16451594344e+13
8 4.81469246295e+13
9 4.23762700793e+13
10 3.65230706654e+13
11 3.16991867996e+13
12 2.94369408304e+13
13 2.04031903147e+13
14 1.37018893034e+13
15 8.91761561687e+12
16 1.31833652006e+13
17 1.39010717893e+13
18 8.22806178508e+12
19 8.22513516563e+12
20 7.79359299283e+12
21 7.79615059172e+12
22 7.70001662709e+12
23 7.24231610447e+12
24 7.21990743993e+12
25 7.09395133944e+12
26 6.92577789424e+12
27 6.53939015776e+12
28 6.57782690833e+12
29 6.37192522244e+12

>>> for trials in range(10):
... print
... for clusters in range(12,18):
... model = KMeans.train(rdd3,clusters)
... print (clusters, model.computeCost(rdd3))

Right Answer?

12 2.45472346524e+13
13 2.00175423869e+13
14 1.90313863726e+13
15 1.52746006962e+13
16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13
13 2.90031673822e+13
14 1.52308079405e+13
15 8.91765957989e+12
16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13
14 2.11070395905e+13
15 1.47792736325e+13
16 1.85736955725e+13
17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13
14 1.45400177021e+13
15 1.52115329071e+13
16 1.41347332901e+13
17 1.31314086577e+13

12 2.47927778784e+13
13 2.43404436887e+13
14 2.1522702068e+13
15 8.91765000665e+12
16 1.4580927737e+13
17 8.57823507015e+12

12 2.31466520037e+13
13 1.91856542103e+13
14 1.49332023312e+13
15 1.3506302755e+13
16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13
13 1.83498739266e+13
14 1.96076943156e+13
15 1.41725666214e+13
16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13
14 1.91732620477e+13
15 8.91769396968e+12
16 8.64876051004e+12
17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13
14 1.95213876047e+13
15 1.93000628589e+13
16 2.07670831868e+13
17 8.47797102908e+12

12 2.39830397362e+13
13 2.00248378195e+13
14 1.34867337672e+13
15 2.09299321238e+13
16 1.32266735736e+13
17 8.50857884943e+12

>>> for trials in range(10): #Try ten times to find best result
... for clusters in range(12, 16): #Only look in interesting range
... model = KMeans.train(rdd3, clusters)
... cost = model.computeCost(rdd3)
... centers = model.clusterCenters #Let’s grab cluster centers
... if cost<1e+13: #If result is good, print it out
... print (clusters, cost)
... for coords in centers:
... print (int(coords[0]), int(coords[1]))
... break
...

Find the Centers

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521

Fit?

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

16 Clusters

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

We are closer to leading edge science than you might think.

The LIGO gravitational wave detector was able to confirm the collision of two neutron stars
with both a gamma ray satellite and optical and other electromagnetic spectrum telescopes.
For these transient events, it requires rapid real-time signal analysis to steer other
instruments to the proper celestial coordinates. The 2 second gamma-ray burst was
detected 1.7 seconds after the GW merger signal. 70 observatories were able to mine
signatures in the following days. Even so, the refined location alert took a long time, and
much improvement lies ahead.

This rapid processing requirement will only become more extreme as

the Square Kilometer Array comes fully on-line. It will generate over

an Exabyte of data a day. It will require extreme real-time

processing to classify and compress this data down to an archivable

size.

Strange, repeating radio signal near the

center of the Milky Way has scientists

stumped

This article (www.livescience.com/strange-

radio-source-milky-way-center) is the

summary of the paper

(arxiv.org/pdf/2109.00652.pdf) that looks an

awful lot like what we are doing.

In April 2020, astronomers picked up some bursts
of activity, in the X-ray band of the spectrum, a
“run-of-the-mill” magnetar. But the team found
that, shortly after the magnetar burst in the X-ray
band, CHIME picked up two sharp staccato peaks
in the radio band, within several milliseconds of
each other, signaling a fast radio burst. The
researchers were able to track the radio bursts to
a point in the sky that was within a fraction of a
degree of SGR 1935+2154 — the same magnetar
that was blasting out X-rays around the same
time. The team used calibration data from other
astrophysical sources to estimate the magnetar’s
brightness. They calculated that the magnetar, in
the fraction of a second that the FRB flashed, was
3,000 times brighter than any other magnetar
radio signal that has yet been observed.
Happening in our own galaxy, thousands of times
brighter than any other pulse we’ve ever seen.

Dimensionality Reduction

We are going to find a recurring theme throughout machine learning:

• Our data naturally resides in higher dimensions

• Reducing the dimensionality makes the problem more tractable

• And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed
representation.

As we return to this theme, we will highlight these slides with our Dimensionality
Reduction badge so that you can follow this thread and appreciate how fundamental
it is.

Why all these dimensions?

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly
dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.

Category Purchase Total ($)

Children's Clothing $800

Pet Supplies $0

Cameras (Dash, Security, Baby) $450

Containers (Storage) $350

Romance Book $0

Remodeling Books $80

Sporting Goods $25

Children's Toys $378

Power Tools $0

Computers $0

Garden $0

Children's Books $180

... ...

< 2
9

0
0

 C
atego

ries >

This is a 2900 dimensional vector.

Why all these dimensions?

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable
error).

People spending on “child’s toys “ and “children’s clothing” might cluster with “child’s books” and, less
obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are
safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the
clusters at all. We can now represent any customer by their distance from these 80 clusters.

Customer Representation

Cluster Young
Parents

College
Athlete

Auto
Enthusiast

Knitter Steelers Fan Shakespeare
Reader

Sci-Fi Fan Plumber ...

Distance 0.02 2.3 1.4 8.4 2.2 14.9 3.3 0.8 ...

We have now accomplished two things:
• we have compressed our data
• learned something about our customers (who to send a dashcam promo to).

80 dimensional vector.

Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances
between randomly distributed points within differently
dimensioned unit hypercubes. Notice how all the points start
to be about the same distance apart.

One can imagine this makes life harder on a clustering
algorithm!

There are other surprising effects: random vectors are
almost all orthogonal; the unit sphere takes almost no
volume in the unit square. These cause all kinds of problems
when generalizing algorithms from our lowly 3D world.

Metrics

Even the definition of distance (the metric) can vary based upon application. If you are solving chess problems, you might find the
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b ≥ c).

Everybody's Favorite DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!

Alternative DR: Principal Component Analysis

Flatter 2D-ish Data Set View down the 1st Princ. Comp.

Principal Component Analysis

Principal Component Analysis plot for 354 Y-chromosome haplotypes from
the public Ysearch database, identified as belonging to Y-DNA Haplogroup J
and its subgroups. Data represent first and second most significant
components calculated from 37 Y-STR markers. The different J1, J2 and J2b
subhaplogroups are resolved clearly into different clusters. Additional
structure can be revealed by calculating further PCAs for each of the
subgroup memberships separately. The labels J1 C37 and J2 C37 identify
haplotypes often associated with Cohen lineages.View down the 1st Princ.
Comp. This is a Wikipedia example of a PCA use case.

Very often, PCA users get fixated on the Analysis
part of PCA, and get confused at to the very basic
information that PCA actually extracts from the
data, the Principal Components.

While we are often inputting large and complex
data-sets, and the visible end result is usually a
2D graph (because we all like a nice 2D graph),
this is really just one application of the more
fundamental principle components.

Principal Components

But, don't let yourself get distracted by all the dots! The knowledge
of the algorithm is completely described by a set of vectors of the
same dimensionality as the input data. If you have 6D data, you get
back 6 6D vectors. The data is 3D in the case at left.

Those vectors have a magnitude proportional to the explained
variance. That is useful guidance as to how much you can reduce the
dimensionality.

If you tell the algorithm to project the data down to some lower
dimension (2D or 3D typically, if not always meaningfully), those
vectors give us the linear transform we use to do so.

What can't the components tell you?

If you have very "uncentered" data, your first principle component is likely to correspond to the mean of the data. So, you probably want to
center your data first.

Similarly, if you have very different scales for your axis, it will be difficult to get meaningful results. So, you may want to rescale. However, be
aware that your results are now scaled!

And, if your axis have different units (say temperature and mass), you need to be very thoughtful. Switching from Fahrenheit to Celsius would
give different results!

What can't the components tell you?

And ask yourself what you expect PCA to do with it's limited output of vectors. If you have a split, or very non-linear distribution,
how do you expect it to respond? It there isn't a good answer, then you need to reconsider your approach. Or at least have
some suspicion of your results.

Everything casts shadows! Those shadows can be very deceiving.

?

From the fun channel of Hideki Tsuiki

Shadow Showtime!

Why So Many Alternatives?

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available
factors. We may have an entry (vector) for each home that captures this kind of data:

Home Data

Latitude 4833438 north

Longitude 630084 east

Last Sale Price $ 480,000

Last Sale Year 1998

Width 62

Depth 40

Floors 3

Bedrooms 3

Bathrooms 2

Garage 2

Yard Width 84

Yard Depth 60

... ...

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...

Principal Component Analysis Fail

1st Component Off
Data Not Very Linear

D x W Is Not Linear
But (DxW) Fits Well

Non-Linear PCA?
A Better Approach Tomorrow!

Why the fascination with linear techniques?

The Streetlight Effect

This is a very real and powerful force
throughout the sciences.

It is not because practitioners are dumb.

But, it is also very often neither explained
nor justified.

Which leads to great confusion.

Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images

Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional

Manifold

3

6

4

0

8

9

7

2

1

Maybe Very Contiguous

Maybe A Small Set
Of Disconnected

9

5

7

3

4

Images from Wikipedia

import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
 plt.figure()
 plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
 plt.xticks([]); plt.yticks([])
 plt.title(title)
 for i in range(X.shape[0]):
 plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.))

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Sparse Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA (Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)
draw(X_tsne, "t-SNE Embedding")

plt.show()

Testing These Ideas With Scikit-learn
Sparse

How does all this fit together?

AI
ML

DL
nee Neural Nets

Big

 Data

Character Recognition

CAPTCHA

Chess

Go

Character Recognition ('90s)

CAPTCHA (2023)

Chess (1997)

Go (2017)

DL
Angsty Poetry

Paintings of
Monkeys Piloting Jets

CUDA (2007)

The
Journey
Ahead

	Slide 1
	Slide 2: Using MLlib
	Slide 3: Clustering
	Slide 4: Clustering
	Slide 5: Finding Clusters
	Slide 6: Finding Our Way
	Slide 7: Finding Clusters
	Slide 8: Finding Clusters
	Slide 9: Finding Clusters
	Slide 10: Right Answer?
	Slide 11: Find the Centers
	Slide 12: Fit?
	Slide 13: 16 Clusters
	Slide 14: We are closer to leading edge science than you might think.
	Slide 15: Dimensionality Reduction
	Slide 16: Why all these dimensions?
	Slide 17: Why all these dimensions?
	Slide 18: Curse of Dimensionality
	Slide 19: Metrics
	Slide 20: Everybody's Favorite DR: Principal Component Analysis
	Slide 21: Alternative DR: Principal Component Analysis
	Slide 22: Principal Component Analysis
	Slide 23: Principal Components
	Slide 24: What can't the components tell you?
	Slide 25: What can't the components tell you?
	Slide 26
	Slide 27: Shadow Showtime!
	Slide 28: Why So Many Alternatives?
	Slide 29: Principal Component Analysis Fail
	Slide 30: Why the fascination with linear techniques?
	Slide 31: Why Would An Image Have 784 Dimensions?
	Slide 32: Central Hypothesis of Modern DL
	Slide 33
	Slide 34: How does all this fit together?
	Slide 35: The Journey Ahead

