
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2023

Deep Learning
In An Afternoon

Unprecedented Disruption

In the history of science, I defy you to find a similarly quick paradigm shift.

10 years ago
 “Neural nets will enable real time ray tracing.” Science Fiction.
 “Neural nets will do protein folding.” Word salad.

Tomorrow
 Skynet will kill us all. Or at least steal our jobs.

5 years ago
 “Neural nets will do CFD.” Well, maybe someday, but not soon.

Today
 Neural net enabled algorithms are the best way to do protein folding.

Why Now?

The ideas have been around for decades. Two components came together in the past 15
years to enable astounding progress:

Widespread parallel computing (GPUs)

 Big data training sets

Two Perspectives
There are really two common ways to view the fundaments of deep learning.

• Inspired by biological models.

• An evolution of classic ML techniques (the perceptron).

They are both fair and useful. We’ll give each a thin slice of our attention before we move on
to the actual implementation. You can decide which perspective works for you.

Modeled After The Brain

As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer

Linear

Network

Hidden Layers

Nonlinear

Courtesy: Chris Olah

Basic NN Architecture

Input Layer Hidden Layer Output Layer

Synapse

Neuron

In Practice

How many

inputs?

How deep?

How many

outputs?

For an image it

could be one

(or 3) per pixel.

Might be an

entire image.

100+ layers

have become

common.

Or could be

discreet set of

classification

possibilities.

Woman

House

Airplane

Cat

Inference
The "forward" or thinking step

Input

Input

Input

H1

H2

H3

O1

O2

Cat

Dog

Inference
Input and Output Layers

0.5

0.9

-0.3

H1

H2

H3

1.0

0.0

Cat

Dog

Inference
Weights or Parameters

0.5

0.9

-0.3

H1

H2

H3

O1

O2

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

Cat

Dog

Activation Function
Neurons apply activation functions at these summed inputs. Activation functions

are typically non-linear. There are countless possibilities. In reality, there are

really only a few popular families:

• The Sigmoid function produces a value between 0 and 1, so it is intuitive

when a probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and

is equal to the input when the input is positive. Rectified Linear activation

functions are currently the most popular activation function as they are more

efficient than the sigmoid or hyperbolic tangent.

• Sparse activation: In a randomly initialized network, only 50% of

hidden units are active.

• Better gradient propagation: Fewer vanishing gradient problems

compared to sigmoidal activation functions that saturate in both

directions.

• Efficient computation: Only comparison, maybe addition and

multiplication for variants.

• There are Leaky and Noisy variants.

-4 -3 -2 -1 0 1 2 3 4

4

3

2

1

Inference
Multiply, Add, do something non-linear.

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13

H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96

H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

Inference
Then do it again.

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35

O2 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = Sig(*Sig() = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.

Biases

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.8 3.2 -0.3) = Sig(*Sig() = .14 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

It is also very useful to be able to offset our inputs by some constant. You can think of this as
centering the activation function, or translating the solution (next slide). We will call this
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with bias=0.1:

+

0.1

0.1

0.1

Bias

Linear + Nonlinear
The magic formula for a neural net is that, at each layer, we apply linear operations (which
look naturally like linear algebra matrix operations) and then pipe the final result through
some kind of final nonlinear activation function. The combination of the two allows us to do
very general transforms.

The matrix multiply provides the skew,
rotation and scale.

The bias provides the translation.

The activation function provides the
warp.

Linear + Nonlinear
These are two very simple networks untangling spirals. Note that the second does not
succeed. With more substantial networks these would both be trivial.

Courtesy: Chris Olah

Width of Network
A very underappreciated fact about networks is that the width of any layer determines how
many dimensions it can work in. This is valuable even for lower dimension problems. How
about trying to classify (separate) this dataset:

Can a neural net do this with twisting and deforming? What good does it do to have more
than two dimensions with a 2D dataset?

Courtesy: Chris Olah

Working In Higher Dimensions
It takes at least 3 units wide to pull this off, regardless of depth.

Greater depth allows us to stack these operations, and can be very effective. The gains from
depth are harder to characterize.

Trying Success Success in 3D

Courtesy: Chris Olah

Theoretically

Universal Approximation Theorem: A 1-hidden-layer feedforward network of this type can
approximate any function1, given enough width2.

Not really that useful as:

• Width could be enormous.

• Doesn't tell us how to find the correct weights.

1) Borel measurable. Basically, mostly continuous and bounded.
2) Could be exponential number of hidden units, with one unit required for each distinguishable input configuration.

Training Neural Networks

So how do we find these magic weights? We want to minimize the error on our training data.
Given labeled inputs, select weights that generate the smallest average error on the outputs.

We know that the output is a function of the weights: E(w1,w2,w3,...i1,...t1,...). So to figure out
which way, and how much, to push any particular weight, say w3, we want to calculate 𝜕𝐸

𝜕𝑤3

0.5

0.9

-

0.3

.13

.96

.40

.35

.85

0.9

I

T

Ground

Truth

For Sigmoid

w O

If we take one small piece, it doesn't look so bad.

Note that the role of the gradient, , here means that it becomes a problem if it vanishes.
This is an issue for very deep networks.

𝜕𝐸

𝜕𝑤3

Back-Propagation

In a useful network, the chain rule results in a lot of factors for any given weight adjustment.

There are a lot of dependencies going on here. It isn't obvious
that there is a viable way to do this in very large networks.

I

Since the number of paths from one node to a distant node can grow exponentially in the length of these paths, the
number of terms in the above sum, which is the number of such paths, can grow exponentially with depth. A large cost
would be incurred because the same computation for the subfactors would be redone many times. To avoid such
recomputation, back-propagation works as a table-filling algorithm that stores intermediate results and avoids repeating
many common subexpressions.

From the fantastic Deep Learning, Goodfellow, Bengio and Courville.

Back-propagation Full Story

If you have 30 minutes, and remember freshman calculus, you can understand the complete details of
the algorithm. I heartily recommend one of these.

An elegant perspective on this can be found from Chris Olah at
http://colah.github.io/posts/2015-08-Backprop .

With basic calculus you can readily work through the details. You can find an excellent explanation
from the renowned 3Blue1Brown at

 https://www.youtube.com/watch?v=Ilg3gGewQ5U .

To be honest, many people are happy to leave the details to TensorFlow, or whatever package they are
using. Just don't think it is beyond your understanding.

http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U

Solvers
However, even this efficient technique leaves us with potentially many millions of simultaneous equations to solve (real
nets have a lot of weights). And the solution space is non-convex. Fortunately, this isn't a new problem created by deep
learning, so we have options from the world of numerical methods.

The standard has been gradient descent. Variations of this have
arisen that perform better for deep learning applications.
TensorFlow will allow us to use these interchangeably - and we
will.

Most interesting recent methods incorporate momentum to
help get over a local minimum. Momentum and step size (or
learning rate) are the two hyperparameters we will encounter
later.

Nevertheless, we don't expect to ever find the actual global
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and
then repeating with another mini-batch.

Wikipedia Commons

Going To Play Along?

Make sure you are on a GPU node:

bridges2-login014% interact -gpu
v001%

Load the TensorFlow 2 Container:

v001% singularity shell --nv /ocean/containers/ngc/tensorflow/tensorflow_23.04-tf2-py3.sif

And start TensorFlow:

Singularity> python
Python 3.8.10 (default, Mar 13 2023, 10:26:41)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
>>> ...some congratulatory noise...
>>>

Two Other Ways To Play Along

From inside the container, and in the right example directory,run the python
programs from the command line:

 Singularity> python CNN_Dropout.py

or invoke them from within the python shell:

 >>> exec(open("./CNN_Dropout.py").read())

The API is well
documented.

That is terribly
unusual.

Take advantage and
keep a browser open

as you develop.

Documentation

MNIST
We now know enough to attempt a problem. Only because the TensorFlow framework, and
the Keras API, fills in a lot of the details that we have glossed over. That is one of its functions.

Our problem will be character recognition. We will learn to read handwritten digits by training
on a large set of 28x28 greyscale samples.

First we’ll do this with the simplest possible model just to show how the TensorFlow
framework functions. Then we will gradually implement our way to a quite sophisticated and
accurate convolutional neural network for this same problem.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Getting Into MNIST

matplotlib bonus insight

import matplotlib.pyplot as plt

plt.imshow(train_images[2], cmap=plt.get_cmap('gray'),
interpolation='none')
plt.title("Digit: {}".format(train_labels[2]))

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Defining Our Network

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
 tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
 tf.keras.layers.Dense(64, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax'),
])

Starting from zero?

In general, initialization values are
hard to pin down analytically.
Values might help optimization but
hurt generalization, or vice versa.

The only certainty is you need to
have different values to break the
symmetry, or else units in the
same layer, with the same inputs,
would track each other.

Practically, we just pick some
"reasonable" values.

model.summary()

Layer (type) Output Shape Param #
===
dense_6 (Dense) (None, 64) 50240

dense_7 (Dense) (None, 64) 4160

dense_8 (Dense) (None, 10) 650
===
Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0

Softmax

Why Softmax?

The values coming out of our matrix operations can have large, and negative
values. We would like our solution vector to be conventional probabilities
that sum to 1.0. An effective way to normalize our outputs is to use the
popular Softmax function. Let's look at an example with just three possible
digits:

Digit Output Exponential Normalized

0 4.8 121 .87
1 -2.6 0.07 .00
2 2.9 18 .13

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Solving For Weights

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
 tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
 tf.keras.layers.Dense(64, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax'),
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Cross Entropy

Given the sensible way we have constructed these outputs, the Cross Entropy Loss
function is a good way to define the error across all possibilities. Better than
squared error, which we have been using until now. It is defined as - y_ log y,
or if this really is a "0", y_=(1,0,0), and

-1log(0.87) - 0log(0.0001) - 0log(0.13) = -log(0.87) = -0.13

It somewhat penalizes a slightly wrong guess, or an "unconfident" right guess, and
greatly penalizes a very wrong guess.

You can also think that it "undoes" the Softmax, if you want.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Training

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
 tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
 tf.keras.layers.Dense(64, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax'),
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

history = model.fit(train_images, train_labels, batch_size=128, epochs=40, verbose=1, validation_data=(test_images, test_labels))

Train on 60000 samples, validate on 10000 samples
Epoch 1/40
60000/60000 [==============================] - 1s 16us/sample - loss: 0.3971 - accuracy: 0.8889 - val_loss: 0.2003 - val_accuracy: 0.9386
Epoch 2/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.1696 - accuracy: 0.9503 - val_loss: 0.1430 - val_accuracy: 0.9562
Epoch 3/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.1224 - accuracy: 0.9631 - val_loss: 0.1218 - val_accuracy: 0.9614
Epoch 4/40
60000/60000 [==============================] - 1s 9us/sample - loss: 0.0972 - accuracy: 0.9715 - val_loss: 0.1109 - val_accuracy: 0.9657
Epoch 5/40
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0813 - accuracy: 0.9758 - val_loss: 0.0986 - val_accuracy: 0.9700
Epoch 6/40
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0683 - accuracy: 0.9796 - val_loss: 0.1035 - val_accuracy: 0.9683
....
....
Epoch 38/40
60000/60000 [==============================] - 1s 12us/sample - loss: 0.0064 - accuracy: 0.9978 - val_loss: 0.1632 - val_accuracy: 0.9699
Epoch 39/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.0027 - accuracy: 0.9993 - val_loss: 0.1384 - val_accuracy: 0.9750
Epoch 40/40
60000/60000 [==============================] - 1s 9us/sample - loss: 6.8242e-04 - accuracy: 0.9999 - val_loss: 0.1390 - val_accuracy: 0.9755

matplotlib bonus insight

history = model.fit(train_images, ..., ...)

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

Results

Why would the test accuracy ever be better than the training
(as momentarily happens here)?

The training value is the average over each batch, and the
test value is only at the end of the epoch, when the model
tends to be at least slightly better.

Latter on we will see that regularization techniques (which
are only turned on for training) also add to this effect.

Accuracy or Loss?

Loss is the "mathematical" value we have
specified in our model to use for parameter
fitting.

Accuracy is simply how many we get right
when we test our model as an application.
It might not apply to a non-classification
problem (think Stable Diffusion) and it
doesn't capture how much right or wrong we
are (we could be very confident that a dog
is a cat).

The two are normally closely related and
track each other. We will choose Accuracy
for our graphs. Any user understands what
accuracy represents.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
 tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax'),
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Let's Go Wider

....

....
Epoch 30/30
60000/60000 [==============================] - 2s 32us/sample - loss: 0.0083 - accuracy: 0.9977 - val_loss: 0.1027 - val_accuracy: 0.9821

Wider Results

Wider

model.summary()

Layer (type) Output Shape Param #
===
dense_18 (Dense) (None, 512) 401920

dense_19 (Dense) (None, 512) 262656

dense_20 (Dense) (None, 10) 5130
===
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

55,050 for 64 Wide Model

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
 tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax'),
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Maybe Deeper?

....

....
60000/60000 [==============================] - 3s 45us/sample - loss: 0.0119 - accuracy: 0.9967 - val_loss: 0.1183 - val_accuracy: 0.9800

Wide And Deep Results

Deep and Wide

model.summary()

Layer (type) Output Shape Param #
===
dense_24 (Dense) (None, 512) 401920

dense_25 (Dense) (None, 512) 262656

dense_26 (Dense) (None, 512) 262656

dense_27 (Dense) (None, 10) 5130
===
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

Recap

FC 64,64 97.5

FC 512,512 98.2

FC 521,512,512 98.0

You usually can't just brute force your way into success. Beyond the obvious time and
memory costs, you are opening yourself up to

• Overfitting

• Vanishing gradients

We will have to be smarter than "bigger is better" about choosing our hyperparameters.
One very smart thing to do is to choose a more appropriate architecture.

Brute Force Does Not Work

Image Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

AlexNet won the 2012 ImageNet LSVRC and changed the DL world.

CONV 11x11/ReLU

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU

CONV 3x3ReLU

CONV 3x3/ReLU

MAX POOLING

FULL 4096/ReLU

4M

16M

37M

442K

1.3M

884K

307K

35K

Image Recognition Done Right: CNNs

Convolution

Convolution
Boundary and Index Accounting

Straight Convolution

+ =

Edge Detector

Images: Wikipedia

Simplest Convolution Net

Courtesy: Chris Olah

Stacking Convolutions

Courtesy: Chris Olah

C

o

n

v

o

l

u

t

i

o

n

From the very nice
Stanford CS231n

course at
http://cs231n.gith
ub.io/convolution

al-networks/

Stride = 2

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Convolution Math

Each Convolutional Layer:

Inputs a volume of size WI×HI×DI (D is depth)

Requires four hyperparameters:

 Number of filters K

 their spatial extent N

 the stride S

 the amount of padding P

Produces a volume of size WO×HO×DO

 WO = (WI − N + 2P) / S+1

 HO = (HI −F +2P) / S+1

 DO = K

This requires N⋅N⋅DI weights per filter, for a total of N⋅N⋅DI⋅K weights and K biases

In the output volume, the d-th depth slice (of size WO × HO) is the result of performing a convolution of the d-

th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling

Courtesy: Chris Olah

A Groundbreaking Example

Among the several novel techniques combined in this work (such
as aggressive use of ReLU), they used dual GPUs, with different
flows for each, communicating only at certain layers. A result is
that the bottom GPU consistently specialized on color
information, and the top did not.

These are the 96 first layer 11x11 (x3, RGB, stacked here) filters from AlexNet.

This is your brain on CNNs.
One of countless "illusions" I could provoke your own CNNs with.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(100, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Let's Start Small

....

....
Epoch 10/10
60000/60000 [==============================] - 12s 198us/sample - loss: 0.0051 - accuracy: 0.9989 - val_loss: 0.0424 - val_accuracy: 0.9874

Early CNN Results

Primitive CNN

model.summary()
__
Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
max_pooling2d_1 (None, 13, 13, 32) 0
__
flatten_1 (Flatten) (None, 5408) 0
__
dense_38 (Dense) (None, 100) 540900
__
dense_39 (Dense) (None, 10) 1010
==
Total params: 542,230
Trainable params: 542,230
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Scaling Up The CNN

....

....
Epoch 15/15
60000/60000 [==============================] - 34s 566us/sample - loss: 0.0052 - accuracy: 0.9985 - val_loss: 0.0342 - val_accuracy: 0.9903

Deeper CNN Results

Deeper CNN

model.summary()
__
Layer (type) Output Shape Param #
==
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
__
conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
__
max_pooling2d_3 (None, 12, 12, 64) 0
__
flatten_3 (Flatten) (None, 9216) 0
__
dense_42 (Dense) (None, 128) 1179776
__
dense_43 (Dense) (None, 10) 1290
==
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

Overfitting = Memorization

We now have enough parameters that the network is prone to memorizing instead of learning. This will only get worse
as our larger and smarter networks grow into billions of parameters.

Cat

CatCat

CatCat

Dog

Dog DogDog

Dog DogDog

Dropout

As we know by now, we need some form of
regularization to help with the overfitting. One
seemingly crazy way to do this is the relatively new
technique (introduced by the venerable Geoffrey
Hinton in 2012) of Dropout.

Some view it as an ensemble method that trains multiple data models simultaneously. One neat perspective
of this analysis-defying technique comes from Jürgen Schmidhuber, another innovator in the field; under
certain circumstances, it could also be viewed as a form of training set augmentation: effectively, more and
more informative complex features are removed from the training data.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.Dropout(0.25),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(10, activation='softmax')
]))

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

CNN With Dropout

Parameter is fraction to drop.

Drop out is not used in the final, trained, network.
Similarly, it is automatically disabled here during
testing.

....

....
Epoch 15/15
60000/60000 [==============================] - 40s 667us/sample - loss: 0.0187 - accuracy: 0.9935 - val_loss: 0.0301 - val_accuracy: 0.9919

Help From Dropout

Dropout CNN

model.summary()

Layer (type) Output Shape Param #
===
conv2d_12 (Conv2D) (None, 26, 26, 32) 320

conv2d_13 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_7 (None, 12, 12, 64) 0

dropout_4 (Dropout) (None, 12, 12, 64) 0

flatten_7 (Flatten) (None, 9216) 0

dense_50 (Dense) (None, 128) 1179776

dropout_5 (Dropout) (None, 128) 0

dense_51 (Dense) (None, 10) 1290
===
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

CNN with Dropout 99.2

Batch Normalization

Another "between layers" layer that is quite popular is Batch Normalization. This technique really helps with vanishing or exploding
gradients. So it is better with deeper networks.

• Maybe not so compatible with Dropout, but the subject of research (and debate).

• Maybe Apply Dropout after all BN layers: https://arxiv.org/pdf/1801.05134.pdf

• Before or after non-linear activation function? Oddly, also open to debate. But, it may be more appropriate after the activation function if
for s-shaped functions like the hyperbolic tangent and logistic function, and before the activation function for activations that result in
non-Gaussian distributions like ReLU.

How could we apply it before of after our activation function if we wanted to? We haven't been peeling our layers apart, but we can micro-
manage more if we want to:

 model.add(tf.keras.layers.Conv2D(64, (3, 3), use_bias=False))
 model.add(tf.keras.layers.BatchNormalization())
 model.add(tf.keras.layers.Activation("relu"))

 model.add(tf.keras.layers.Conv2D(64, kernel_size=3, strides=2, padding="same"))
 model.add(tf.keras.layers.LeakyReLU(alpha=0.2))
 model.add(tf.keras.layers.BatchNormalization(momentum=0.8))

There are also normalizations that work on single samples instead of batches, so better for recurrent networks. In TensorFlow we have
Group Normalization, Instance Normalization and Layer Normalization.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Trying Batch Normalization

....

....
Epoch 15/15
60000/60000 [==============================] - 50s 834us/sample - loss: 0.0027 - accuracy: 0.9993 - val_loss: 0.0385 - val_accuracy: 0.9891

Not So Helpful

Batch Normalization CNN

model.summary()

Layer (type) Output Shape Param #
===
conv2d_2 (Conv2D) (None, 26, 26, 32) 320

batch_normalization (None, 26, 26, 32) 128

conv2d_3 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_1 (None, 12, 12, 64) 0

batch_normalization_1 (None, 12, 12, 64) 256

flatten_1 (Flatten) (None, 9216) 0

dense_2 (Dense) (None, 128) 1179776

batch_normalization_2 (Batch (None, 128) 512

dense_3 (Dense) (None, 10) 1290
===
Total params: 1,200,778
Trainable params: 1,200,330
Non-trainable params: 448

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

CNN with Dropout 99.2

Batch Normalization 98.9

Real Time Demo

This amazing, stunning, beautiful demo from Adam Harley is very similar to what we just did, but
different enough to be interesting.

https://aharley.github.io/nn_vis/cnn/2d.html

It is worth experiment with. Note that this is an excellent demonstration of how efficient the forward
network is. You are getting very real-time analysis from a lightweight web program. Training it took
some time.

https://aharley.github.io/nn_vis/cnn/2d.html

Adding TensorBoard To Your Code

TensorBoard is a very versatile tool that allows us multiple types of insight into our TensorFlow codes. We need only
add a callback into the model to activate the necessary logging.

...

...

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='TB_logDir', histogram_freq=1)

history = model.fit(train_images, train_labels, batch_size=128, epochs=15, verbose=1,
 validation_data=(test_images, test_labels), callbacks=[tensorboard_callback])
...
...

TensorBoard runs as a server, because it has useful run-time capabilities, and requires you to start it separately, and to
access it via a browser.

Somewhere else:

 tensorboard --logdir=TB_logD

Somewhere else:

 Start your Browser and point it at port 6006: http://localhost:6006/

If you are running on Bridges login nodes, from your computer something like:

 ssh -2 -Nf -L 6006:127.0.0.1:6006 br014.bridges2.psc.edu

If you are running on a Bridges compute nodes, you need to use the compute's
IB address/hostname, for example:

 ssh -2 -Nf -L 6006:r001.ib.bridges2.psc.edu:6006 br014.bridges2.psc.edu

TensorBoard Analysis
The most obvious thing we can do is to look at our training loss. Note that TB is happy to do this in real-time as the
model runs. This can be very useful for you to monitor overfitting.

Our First Model
64 Wide FC Our CNN

TensorBoard Graph Views

And we can drill down.

We can explore the architecture of the deep learning graphs we have constructed.

Our First Model
64 Wide FC

Our CNN Our CNN's
FC Layer

Keras
"Conceptual

Model"
View

of CNN

TensorBoard Parameter Visualization

And we can observe the time evolution of our
weights and biases, or at least their
distributions.

This can be very telling, but requires some
deeper application and architecture dependent
understanding.

Histogram View

Distribution View

TensorBoard Add Ons
TensorBoard has lots of extended capabilities. Two particularly useful and powerful ones are Hyperparameter Search and
Performance Profiling.

Hyperparameter Search

Performance Profiling

Requires some scripting on your part. Look at
https://www.tensorflow.org/tensorboard/hyperparameter_t
uning_with_hparams for a good introduction.

Going beyond basics, like IO time, requires integration of hardware
specific tools. This is well covered if you are using NVIDIA, otherwise
you may have a little experimentation to do. The end result is a user
friendly interface and valuable guidance.

Scaling

If one GPU is good, more must be better! This is largely true, and you will notice our GPU nodes are stuffed full with 4
or more GPUs each.

You might also notice that most of the machines in the "Top 10" have a lot of GPUs in them. They deliver most of the
FLOPS for scientific codes, but are also an enviable Deep Learning resource.

Actually a Crypto miner. We hate these guys for hoarding our GPUs!!!

You might have noticed that most of the
interesting leading-edge research seems to
involve a lot of GPUs these days.

And the very public battles in the Large
Language Model space seem to be about who
can get their hands on the largest GPU clusters.

How might you reach these levels of capability?

And what about those scaling limitations I
mentioned earlier?

Data Parallelism

One early technique to utilize multiple GPUs was to independently train an ensemble of GPUs on the same task, and then
have them vote on the answer. This method does work, but then the end user needs to have an ensemble of their own
GPUs. This is not ideal for an application that you wish to run on your phone, or in a self-driving car.

It would be better if we could use a lot of GPUs for the training step, but end up with one great set of parameters that will
fit on a single GPU when we are done. Then our users don't need to own supercomputers.

One technique to achieve this is to use Data Parallelism so that
each GPU trains on a separate batch of data, and at the end of
that batch we average the collective wisdom of all of these GPUs
to arrive at our new and improved parameters.

Now when we finish we have one super set of parameters that
fits on a single GPU.

This gradient averaging requires an all-reduce, which can be quite
expensive given the number of weights involved.

TensorFlow Scalability
This is very straightforward to implement in TensorFlow using the MirroredStrategy on a single node with multiple GPUs, or
MultiWorkerMirroredStrategy across multiple nodes.

strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
 model = tf.keras.Sequential([
 tf.keras.layers.Dropout(rate=0.2, input_shape=X.shape[1:]),
 tf.keras.layers.Dense(units=64, activation='relu'),
 ...
])
 model.compile(...)
model.fit(...)

MNIST with Horovod!

Horovod: initialize Horovod.
hvd.init()

Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))
...
Horovod: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(12.0 / hvd.size())
...
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
...
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
...
model.compile(loss=keras.losses.categorical_crossentropy,optimizer=opt,metrics=['accuracy'])

callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0),]
if hvd.rank() == 0: callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-
{epoch}.h5'))

Horovod: fast and easy distributed deep learning in TensorFlow

Alexander Sergeev, Mike Del Balso

You can find a full example of using Horovod with a Keras MNIST code at:
https://horovod.readthedocs.io/en/latest/keras.html

An alternative that has proven itself at extreme scale is Horovod.

https://horovod.readthedocs.io/en/latest/keras.html

Scaling Up Massively

Horovod demonstrates its excellent scalability with a Climate Analytics code that won the Gordon Bell prize in 2018. It
predicts Tropical Cyclones and Atmospheric River events based upon climate models. It shows not only the reach of
deep learning in the sciences, but the scale at which networks can be trained.

Exascale Deep Learning for Climate Analytics

Kurth, et. al.

• 1.13 ExaFlops (mixed precision) peak training performance

• On 4560 6 GPU nodes (27,360 GPUs total)

• High-accuracy (harder when predicting "no hurricane today" is
98% accurate), solved with weighted loss function.

• Layers each have different learning rate

Model Parallelism

What about all these LLMs you have been hearing about that use trillions of parameters? Now, we don't have enough
memory to fit the whole model on one GPU.

Instead we spread the parts of the model around (mostly their parameters, but could
also be different sections of a more complex model) by using Model Parallelism.

The most popular way to do this in TensorFlow is via the Mesh TensorFlow API.

And, we can mix the way we distribute these parameters, layers, pipelines and model
branches in various hybrid methods as well.

From the Chainer docs on their parallelism

API. Yet another DL framework.

Scaling of LLMs

Wikipedia CommonsWikipedia Commons

For LLMs that have been designed to scale well
(avoiding overfitting and vanishing gradients, for
example), we find that performance is a predictable
function of:

• The dataset size
• The number of parameters

And these curves show no signs of ending yet.

So, in these applications we do expect better
performance through brute force scaling.

Training Compute-Optimal Large Language Models

Hoffmann et. al.

Emergent Capability

Wikipedia CommonsWikipedia Commons

An emergent ability as an ability that is not present in small models but develops as the model is scaled. These might be
unanticipated.

Some areas of science are familiar with this idea (physics and biology, for sure). In computer science this concept has
largely been a novelty (Conway’s Game of Life is a notable example). In Deep Learning, it has become a very significant
phenomena.

Wikipedia Commons

Once again, bear in mind that many of the principles we
have mentioned (overfitting, vanishing gradients, etc.)
mean that brute force scaling is not going to be a default
route to better performance.

Instead, understanding of those principles will allow you
the option to scale.

https://www.jasonwei.net/blog/emergence

Also a good associated paper.

https://www.jasonwei.net/blog/emergence

Data Augmentation

As I've mentioned, labeled data is valuable. This type of supervised learning often requires human-labeled data.
Getting more out of our expensive data is very desirable. More datapoints generally equals better accuracy. The
process of generating more training data from our existing pool is called Data Augmentation, and is an extremally
common technique, especially for classification problems.

Our MNIST network has learned to recognize very uniformly formatted characters:

 What if we wanted to teach it:

You can see how straightforward and mechanical this is. And yet very effective. You will often see detailed
explanations of the data augmentation techniques employed in any given project.

Note that tf.image makes many of these processes very convenient.

Scale Invariance Rotation Invariance Noise Tolerance Translation Invariance

How many samples do we need?

This is another hyperparameter (yes), where we can
only offer a vague rule of thumb. And that suggestion is
about 5000 per category for competence, 10 million for
a real task with human performance.

Stupid Neural Nets
Why can't they learn like we do? Can't I just tell you a fact, or an algorithm, and you can just "get it" it without countless
iteration?

One-Shot Learning

On the other hand, maybe I could teach adult you what a platypus is with one example. And, if you want to spot a
particular mad bomber with your airport facial recognition system, you may only have one photo.

There is such a thing as "one-shot" (or N-shot) learning. But it is harder, requires more specialized techniques, and is
straying into the area of unsupervised learning. We will come back to this, but it is no magic bullet for sparse data.

English for Infants

Idiots Guide to Winning the US Open

def test(args, model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

def main():
 # Bunch of parsed training inputs...

 torch.manual_seed(args.seed)

 device = torch.device("cuda" if use_cuda else "cpu")

 kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
 train_loader = torch.utils.data.DataLoader(
 datasets.MNIST('../data', train=True, download=True,
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])),
 batch_size=args.batch_size, shuffle=True, **kwargs)
 test_loader = torch.utils.data.DataLoader(
 datasets.MNIST('../data', train=False, transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])),
 batch_size=args.test_batch_size, shuffle=True, **kwargs)

 model = Net().to(device)
 optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

 scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
 for epoch in range(1, args.epochs + 1):
 train(args, model, device, train_loader, optimizer, epoch)
 test(args, model, device, test_loader)
 scheduler.step()

 if args.save_model:
 torch.save(model.state_dict(), "mnist_cnn.pt")

if __name__ == '__main__':
 main()

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout2d(0.25)
 self.dropout2 = nn.Dropout2d(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

def train(args, model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))

PyTorch CNN MNIST

Not a fair comparison of terseness as this version has a
lot of extra flexibility.

From:
https://github.com/pytorch/examples/blob/master/mnist/main.py

https://github.com/pytorch/examples/blob/master/mnist/main.py

Exercises
We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away. Of
course everything we have done is standard and you can work on these problems in any reasonable environment.

You may have wondered what else was to be found at tf.keras.datasets. The answer is many interesting problems. The
obvious follow-on is:

Fashion MNIST

These are 60,000 training images, and 10,000 test
images of 10 types of clothing, in 28x28 greyscale.
Sound familiar? A more challenging drop-in for MNIST.

More tf.keras.datasets Fun

Boston Housing Predict housing prices base upon crime, zoning, pollution, etc.

CIFAR10 32x32 color images in 10 classes.

CIFAR100 Like CIFAR10 but with 100 non-overlapping classes.

IMDB 1 sentence positive or negative reviews.

Reuters 46 topics in newswire form.

I have been known to fall asleep during films, but this...

Mann photographs the Alberta Rocky Mountains in a superb fashion...

Its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from

70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental

operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to

three dlrs reuters...

Endless Exercises
Kaggle Challenge
The benchmark driven nature of deep learning
research, and its competitive consequences, have
found a nexus at Kaggle.com. There you can find
over 20,000 datasets:

and competitions:

Including this one:

	Slide 1
	Slide 2: Unprecedented Disruption
	Slide 3: Why Now?
	Slide 4: Two Perspectives
	Slide 5: Modeled After The Brain
	Slide 6: As a Highly Dimensional Non-linear Classifier
	Slide 7: Basic NN Architecture
	Slide 8: In Practice
	Slide 9: Inference The "forward" or thinking step
	Slide 10: Inference Input and Output Layers
	Slide 11: Inference Weights or Parameters
	Slide 12: Activation Function
	Slide 13: Inference Multiply, Add, do something non-linear.
	Slide 14: Inference Then do it again.
	Slide 15: As A Matrix Operation
	Slide 16: Biases
	Slide 17: Linear + Nonlinear
	Slide 18: Linear + Nonlinear
	Slide 19: Width of Network
	Slide 20: Working In Higher Dimensions
	Slide 21: Theoretically
	Slide 22: Training Neural Networks
	Slide 23: Back-Propagation
	Slide 24: Back-propagation Full Story
	Slide 25: Solvers
	Slide 26: Going To Play Along?
	Slide 27: The API is well documented. That is terribly unusual. Take advantage and keep a browser open as you develop.
	Slide 28: MNIST
	Slide 29: Getting Into MNIST
	Slide 30: Defining Our Network
	Slide 31: Softmax
	Slide 32: Solving For Weights
	Slide 33: Cross Entropy
	Slide 34: Training
	Slide 35: Results
	Slide 36: Let's Go Wider
	Slide 37: Wider Results
	Slide 38: Maybe Deeper?
	Slide 39: Wide And Deep Results
	Slide 40: Brute Force Does Not Work
	Slide 41: Image Object Recognition [Krizhevsky, Sutskever, Hinton 2012]
	Slide 42: Convolution
	Slide 43: Convolution Boundary and Index Accounting
	Slide 44: Straight Convolution
	Slide 45: Simplest Convolution Net
	Slide 46: Stacking Convolutions
	Slide 47: Convolution
	Slide 48: Convolution Math
	Slide 49: Pooling
	Slide 50: A Groundbreaking Example
	Slide 51: This is your brain on CNNs. One of countless "illusions" I could provoke your own CNNs with.
	Slide 52: Let's Start Small
	Slide 53: Early CNN Results
	Slide 54: Scaling Up The CNN
	Slide 55: Deeper CNN Results
	Slide 56: Overfitting = Memorization
	Slide 57: Dropout
	Slide 58: CNN With Dropout
	Slide 59: Help From Dropout
	Slide 60: Batch Normalization
	Slide 61: Trying Batch Normalization
	Slide 62: Not So Helpful
	Slide 63: Real Time Demo
	Slide 64
	Slide 65: Adding TensorBoard To Your Code
	Slide 66: TensorBoard Analysis
	Slide 67: TensorBoard Graph Views
	Slide 68: TensorBoard Parameter Visualization
	Slide 69: TensorBoard Add Ons
	Slide 70: Scaling
	Slide 71: Data Parallelism
	Slide 72: TensorFlow Scalability
	Slide 73: Scaling Up Massively
	Slide 74: Model Parallelism
	Slide 75: Scaling of LLMs
	Slide 76: Emergent Capability
	Slide 77: Data Augmentation
	Slide 78: Stupid Neural Nets
	Slide 79
	Slide 80: Exercises
	Slide 81: More tf.keras.datasets Fun
	Slide 82: Endless Exercises

