
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2023

A Brief History of Big Data

Big data is a broad term for data sets so large or complex that traditional
data processing applications are inadequate.

—Wikipedia

Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….

Less sophisticated is sometimes better…

Get all articles from 2007.

Get all papers on “fault tolerance”
 – grumble and cough

“Chronologically” or “geologically” organized.
Familiar to some of you at tax time.

Indexing will determine your individual performance.
Teamwork can scale that up.

The culmination of centuries...

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author – grumble… Your only hope…

Then data started to grow.

1956 IBM Model 350

5 MB of data!

But still pricey. $

Better think about what
you want to save.

And finally got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate. The original reference actually mentions a more accurate 208TB, and in
2013 the digital collection alone was 3PB.

Whys:
 Storage got cheap
 So why not keep it all?
 Today data is a hot commodity $
 And we got better at generating it
 Facebook
 Deep Learning
 IoT
 Science...

Pan-STARRS

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum:

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy

documents
Wikipedia

Commons

Environmental sensors:

Water temperature

profiles from tagged

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html

A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)

• Only about 2.5TB per year, but...
• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with

increases in volume in order to ensure that translation always finishes within the 15 minute window…. and prioritizes the highest quality material,
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”

3 V's of Big Data
• Volume
• Velocity
• Variety

Why it wasn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for agile development

"What do you mean we didn't plan to keep logs of
everyone's heartbeat?"

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a transaction is costly.

Good Ol’ SQL couldn't keep up.
Oracle

SELECT NAME, NUMBER, FROM PHONEBOOK Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address

• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

So we gave up: Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723

Sure, giving up ACID buys us a lot performance, but doesn't our crude organization
cost us something? Yes, but remember these guys?

How does a pile of unorganized data solve our
problems?

This is what they
look like today.

• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
XML

12 XML
XML

<CATALOG>

 <PLANT>

 <COMMON>Bloodroot</COMMON>

 <BOTANICAL>Sanguinaria canadensis</BOTANICAL>

 <ZONE>4</ZONE>

 <LIGHT>Mostly Shady</LIGHT>

 <PRICE>$2.44</PRICE>

 <AVAILABILITY>031599</AVAILABILITY>

 </PLANT>

 <PLANT>

 <COMMON>Columbine</COMMON>

 <BOTANICAL>Aquilegia canadensis</BOTANICAL>

 <ZONE>3</ZONE>

 <LIGHT>Mostly Shady</LIGHT>

 <PRICE>$9.37</PRICE>

 <AVAILABILITY>030699</AVAILABILITY>

 </PLANT>

.

.

• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value
store itself

• Different databases
 aggregate data differently
 on disk with different
 optimizations

Wide Column Stores
Google BigTable

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847

• Great for semantic web

• Great for graphs

Graph
Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated

SPARQL (W3C Standard)

• Uses Resource Description Framework format
• triple store

• RDF Limitations
• No named graphs
• No quantifiers or general statements

• “Every page was created by some author”
• “Cats meow”

• Requires a schema or ontology (RDFS) to define rules
• "The object of ‘homepage’ must be a

Document.“
• "Link from an actor to a movie must

connect an object of type Person to an
object of type Movie."

SELECT ?name ?email

WHERE {

 ?person a foaf:Person.

 ?person foaf:name ?name.

 ?person foaf:mbox ?email. }

Queries
SPARQL, Cypher

Cypher (Neo4J only)

• No longer proprietary
• Stores whole graph, not just triples
• Allows for named graphs
• …and general Property Graphs (edges
 and nodes may have values)

SMATCH (Jack:Person

 { name:‘Jack Nicolson’})-[:ACTED_IN]-(movie:Movie)

RETURN movie

Graph Databases
• These are not curiosities, but are behind some of the most high-profile pieces of Web

infrastructure.

• They are definitely big data.

Microsoft Bing Knowledge Graph Search and conversations. ~2 billion primary entries
~55 billion facts

Facebook ~50 million primary entries
~500 million assertions

Google Knowledge Graph Search and conversations. ~1 billion entries
~55 billion facts

LinkedIn graph 590 million members
30 million companies

Noy, Goa, Jain. Communications of the ACM, August 2019

What kind
of databases

are they?

Hadoop & Spark

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark evolves that in several
directions that we will get in to. Both can accommodate multiple types of databases and
achieve their performance gains by using parallel workers.

Frameworks for Data

The mother of Hadoop was necessity. It is
trendy to ridicule its primitive design, but
it was the first step.

We have repurposed many of these
blocks to build a better framework.

SQL
DataFrame

• Programming platform
• Distributed filesystem
• Parallel execution environment
• Software ecosystem

What exactly is this Hadoop "framework"?

D
at

a

R
e

d
u

ce

M
ap

Programming = MapReduce
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

M
ap

R
ed

u
ce

D
at

a
D

at
a

Answer

Transponder ID -> Geo Coordinates
00154301 -> 59.33, 177.60
04435354 -> 56.71, 171.73
04539340 -> 25.18, -118.89

Only keep data for Bering Sea
00154301 -> 59.33, 177.60
04435354 -> 56.71, 171.73

Find biggest change
at each transponder
in last 24h

00154301 -> 30
04435354 -> 5

Ex: Need to find any recent big
swings in Bering Sea surface
temps.

Data is a series of timestamped
temps for each transponder.

Keep any over 20
degrees

00154301 -> 30

In Place

Maybe
Shuffles

HDFS: Hadoop Distributed File System

• Replication

– Failsafe

– Predistribution

• Write Once Read Many (WORM)

– No Random Access (contrast with RDBMS)

• Requires underlying filesystem

Hadoop Ecosystem Lives On

And lots
more...

	Slide 1
	Slide 2
	Slide 3: Once there was only small data...
	Slide 4: Less sophisticated is sometimes better…
	Slide 5: The culmination of centuries...
	Slide 6: Then data started to grow.
	Slide 7: And finally got BIG.
	Slide 8: A better sense of biggish
	Slide 9: Good Ol’ SQL couldn't keep up. Oracle
	Slide 10: So we gave up: Key-Value Redis, Memcached, Amazon DynamoDB, Riak, Ehcache
	Slide 11: How does a pile of unorganized data solve our problems?
	Slide 12: Document
	Slide 13: Wide Column Stores Google BigTable
	Slide 14: Graph Titan, GEMS
	Slide 15: Queries SPARQL, Cypher
	Slide 16: Graph Databases
	Slide 17: Hadoop & Spark
	Slide 18: Frameworks for Data
	Slide 19
	Slide 20
	Slide 21: HDFS: Hadoop Distributed File System
	Slide 22: Hadoop Ecosystem Lives On

