
ADAPT Module

Intro to Data Science

with Pandas and SQL

John Urbanic
Pittsburgh Supercomputing Center

Copyright 2023

The
landscape

today.

Data Science Today

• Basic Data
• Pandas

• "Serious" Data Science
• SQL

• Big Data
• Spark

Machine Learning / AI

Pandas

• Pandas has become the standard Python way to input, manipulate and write basic data.

• It also integrates well with other tools, like visualizing with Matplotlib.

• It has limitations, which is why SQL and big data techniques are essential for many tasks,
but for quick-and-dirty, or limited applications it is very efficient.

• In many Python environments, it is there by default. If not, it is easy to add. In this
course, if you start a python shell, it will be there.

Our First Dataset

We will begin our exploration of Pandas using a well
known dataset drawn from the infamous Titanic
disaster.

It has a variety of data on each of 891 passengers.

Amongst the typical demographic data is included their survival. It enables an interesting,
if somewhat morbid, analysis to determine the foremost factors in survival. Women and
children first? Or, save the rich?

import pandas as pd

titanic = pd.read_csv("titanic.csv")

Getting Started with Pandas

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
..
883 884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
884 885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

[577 rows x 12 columns]

titanic

This "pd" is very standard

Smart, understands "csv"

Survived Survival (0 = No; 1 = Yes)

Pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

Name Name

Sex

Age

SibSp Number of Siblings/Spouses Aboard

Parch Number of Parents/Children Aboard

Ticket Ticket Number

Fare Fare (British pound)

Cabin Cabin number

Embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

titanic["Name"]

DataFrame Queries

0 Braund, Mr. Owen Harris
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
 ...
886 Montvila, Rev. Juozas
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

titanic[["Age","Sex"]]

DataFrame Queries

Age Sex
0 22.0 male
1 38.0 female
2 26.0 female
3 35.0 female
4 35.0 male
..
886 27.0 male
887 19.0 female
888 NaN female
889 26.0 male
890 32.0 male

titanic[titanic["Age"]>30]

DataFrame Conditional Queries

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
11 12 1 1 Bonnell, Miss. Elizabeth female 58.0 0 0 113783 26.5500 C103 S
..
873 874 0 3 Vander Cruyssen, Mr. Victor male 47.0 0 0 345765 9.0000 NaN S
879 880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 1 11767 83.1583 C50 C
881 882 0 3 Markun, Mr. Johann male 33.0 0 0 349257 7.8958 NaN S
885 886 0 3 Rice, Mrs. William (Margaret Norton) female 39.0 0 5 382652 29.1250 NaN Q
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

DataFrame Sorting

titanic.sort_values(by="Age")[["Name","Age"]]

Name Age
803 Thomas, Master. Assad Alexander 0.42
755 Hamalainen, Master. Viljo 0.67
644 Baclini, Miss. Eugenie 0.75
469 Baclini, Miss. Helene Barbara 0.75
78 Caldwell, Master. Alden Gates 0.83
..
859 Razi, Mr. Raihed NaN
863 Sage, Miss. Dorothy Edith "Dolly" NaN
868 van Melkebeke, Mr. Philemon NaN
878 Laleff, Mr. Kristo NaN
888 Johnston, Miss. Catherine Helen "Carrie" NaN

titanic.sort_values(by="Age")[["Name","Age"]][0:10]

Name Age
803 Thomas, Master. Assad Alexander 0.42
755 Hamalainen, Master. Viljo 0.67
644 Baclini, Miss. Eugenie 0.75
469 Baclini, Miss. Helene Barbara 0.75
78 Caldwell, Master. Alden Gates 0.83
..
859 Razi, Mr. Raihed NaN
863 Sage, Miss. Dorothy Edith "Dolly" NaN
868 van Melkebeke, Mr. Philemon NaN
878 Laleff, Mr. Kristo NaN
888 Johnston, Miss. Catherine Helen "Carrie" NaN

import matplotlib.pyplot as plt

titanic["Age"].hist(bins=30)

plt.show()

If you like pictures (matplotlib)

This assumes you have an
X server running on your laptop.

Which we do.

Assignment: Can we find a significant survival variable?

Can you find a significant factor in the data which could be used to predict

survival rates?

I will suggest you focus on one variable at a time.

Note that there are many possible answers. Going from a simple hypothesis

("Maybe people from Cherbourg are unlucky?") to a more complex formula

incorporating multiple variables - with the goal of a more accurate prediction

- is the path of data analysis. This is our first step on that journey.

• We are going to use a Virtual Machine for this Assignment. It is called adapt.psc.edu and you can ssh there.

• Copy the titanic dataset (using the cp command) from ~datasets/Titanic/titanic.csv to your own directory.

• Start a python shell.

• Find a meaningful factor and submit your script and results.

Solution Review:

Titanic with Pandas

import pandas as pd
titanic = pd.read_csv("titanic.csv")

Getting Started with Titanic

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
..
883 884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
884 885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

[577 rows x 12 columns]

males.shape

(577, 12)

males[males["Survived"]==1].shape
(109, 12)

109/577

0.18890814558058924

19% Survival Rate for Males

males = titanic[titanic["Sex"]=="male"]

titanic[titanic["Sex"]=="female"].shape

How did the women fare?

(314, 12)

titanic[(titanic["Sex"]=="female") & (titanic["Survived"]==1)].shape

(233, 12)

233/314

0.7420382165605095

74% Survival Rate for Females

Hypothesis confirmed: chivalry not dead.

But Jack Dawson is.

men = titanic[(titanic["Sex"]=="male") & (titanic["Age"]>15)]

Women and children first!?

men.shape

(413, 12)

men[men["Survived"]==1].shape

(72, 12)

72/413

0.17433414043583534233/314

17% Survival Rate for Men

women_and_children = titanic[(titanic["Sex"]=="female") | (titanic["Age"]<16)]
women_and_children.shape

(354, 12)

#Seems like some people are missing...

NaNs are everywhere!

titanic[titanic["Age"].isna()]

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
17 18 1 2 Williams, Mr. Charles Eugene male NaN 0 0 244373 13.0000 NaN S
19 20 1 3 Masselmani, Mrs. Fatima female NaN 0 0 2649 7.2250 NaN C
26 27 0 3 Emir, Mr. Farred Chehab male NaN 0 0 2631 7.2250 NaN C
28 29 1 3 O'Dwyer, Miss. Ellen "Nellie" female NaN 0 0 330959 7.8792 NaN Q
..
859 860 0 3 Razi, Mr. Raihed male NaN 0 0 2629 7.2292 NaN C
863 864 0 3 Sage, Miss. Dorothy Edith "Dolly" female NaN 8 2 CA. 2343 69.5500 NaN S
868 869 0 3 van Melkebeke, Mr. Philemon male NaN 0 0 345777 9.5000 NaN S
878 879 0 3 Laleff, Mr. Kristo male NaN 0 0 349217 7.8958 NaN S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S

[177 rows x 12 columns]

413+354+177

944

This is bigger than the total passenger list (891).
But makes sense as we have double counted some
females with Age=NaN in our logic.

women_and_children[women_and_children["Survived"]==1].shape

(254, 12)

Women and children first!

254/354

0.7175141242937854

72% Survival Rate for
Women & Children

Another obvious question we might ask is how did the wealthier, 1st class,
passengers do versus the underclasses?

We could continue with our basic tools and separate out the various
passenger classes, and perform some math to get at an answer.

However, we are now starting to ask questions that can utilize more
sophisticated tools like:

How did Thurston Howell III make out?

o Joins (called Merges in Pandas)
o Grouping
o Pivot tables

Pandas has these capabilities. However, more complex data manipulation like this can often
benefit from the more powerful capabilities of a Structured Query Language (SQL) database.
Certainly at scale.

So we will preview the power of these operations with one last look at this problem, and
then we will move on to SQL.

After you have learned SQL, you will easily be able to employ these operations in Pandas
when you wish.

Grouping typically performs 3 steps:

o Splits the data into groups base on some criteria: Pclass
o Applies a function to each group separately: Survival Rate
o Combines the results into a new table

That is one way to get directly at our answer. It becomes this simple:

Grouping

titanic[['Pclass', 'Survived']].groupby('Pclass').mean()

Pclass Survived
1 0.629630
2 0.472826
3 0.242363

That is a pretty brutal curve.
I believe it speaks for itself.

SQL

What is a "Relational Database"?

An RDBMS (Relational DataBase Management System) organizes data into tables

of columns (attributes, fields) and rows (records).

This concept has been developed and refined since 1970, and is a mature

concept at this point.

Most RDMBSs use SQL as their query language. This has become an ISO standard

(with many deviations).

What Is MySQL?

MySQL is an open source RDBMS originating in 1995. It has

spun off forks, and it has open source peers (most notably

PostgreSQL) and commercial alternatives (Oracle and MS

SQL Server). These each have their own deviations from

the ISO standard, as well as significant performance

differences.

MySQL operates as a server, with clients that connect from wherever, and may be calling from many

different languages: from JavaScript in some web page, or Java on the backend, or within a Python

program. We will be using a dedicated, if basic, MySQL client.

We will use a MySQL client installed on the VM along with our database. To start it you need only log on to
adapt.psc.edu and type:

Starting MySQL

[urbanic@msdas]$ mysql urbanic
mysql> SHOW DATABASES;

+--------------------+
| Database |
+--------------------+
| performance_schema |
| urbanic |
+--------------------+
2 rows in set (0.01 sec)

This shows us the available databases. By starting mysql with the command "mysql urbanic" I have loaded my own
personal database already. Make sure to use your own username to start mysql, not "urbanic". We could also use the
command USE urbanic to select this database at any time.

Note that all SQL commands end with a ";". Case matters, but SQL keywords can be upper or lower case. I will use
upper case for them as that is a common convention and makes it clear what they are as you are learning.

Also note that SQL code formatting varies wildly and is inconsistent. This talk will adhere to that tradition.
Although no ones seems to care, there is a supposed standard, and the best summary of it I can find is here:

https://www.isbe.net/Documents/SQL_server_standards.pdf

The structure, or schema, is the most important characteristic of any database. We can get a top level view by first
listing the tables.

Showing Our Tables

mysql> SHOW TABLES;

From here on out I will drop the mysql> prompt from our examples. We are always working in the SQL client shell.

+-----------------+
|Tables_in_urbanic|
+-----------------+
| Customer |
| Line |
| OrderDetail |
| Orders |
| Product |
| Vendor |
| Zips |
+-----------------+
7 rows in set (0.00 sec)

And each table has fields, or columns. We can list them as so.

Showing Table Fields

SHOW COLUMNS FROM Orders;

Each field has a type, and some have a size. There are 30+ types, but they are mostly obvious variations of strings,
numbers and dates. There are some fancy Spatial, JSON and binary blob types as well. You can find a full list at:

https://dev.mysql.com/doc/refman/8.0/en/data-types.html

There are some other features attached to fields that we will get to later.

+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
OrderId	int	NO		0	
Date	date	NO		NULL	
DateRequired	date	NO		NULL	
DateShipped	date	YES		NULL	
Status	varchar(15)	NO		NULL	
Comments	text	YES		NULL	
CustomerId	int	NO		NULL	
+--------------+-------------+------+-----+---------+-------+
7 rows in set (0.00 sec)

https://dev.mysql.com/doc/refman/8.0/en/data-types.html

MySQL Workbench is a wonderful tool for working with MySQL databases. If we were going to work deeply with SQL, we
should surely involve this more in our work. However, in keeping with our theme of minimal distractions while we
investigate the core concepts, we will only use it to create nice schematics.

MySQL Workbench

These are most of our current tables. We will see what some of those little icons and arrows mean later.

The SELECT command is our most useful command in manipulating data, and we will look at some of the common
variations.

SELECT

SELECT * FROM Customer;
+------------+-----------+----------+-------------------------------+--------------+----------------+-------+------------+---------+-------------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit |
+------------+-----------+----------+-------------------------------+--------------+----------------+-------+------------+---------+-------------+
1	Mary	Yates	1414 East Anderson Street	#317	Savannah	GA	31404	USA	100
2	James	Parker	29 Lucian Street		Manchester	CT	06040	USA	100
3	Kim	Bond	1421 Floral Street Northwest		Washington	DC	20012	USA	100
4	Thomas	Broadnax	1915 Southeast 29th Street		Oklahoma City	OK	73129	USA	100
5	Stephen	Williams	9805 South Youngs Lane		Oklahoma City	OK	73159	USA	100
6	Mark	Hinton	8642 Yule Street		Arvada	CO	80007	USA	100
7	Deborah	Lloyd	5244 West Port Au Prince Lane		Glendale	AZ	85306	USA	100

| 8 | Linda | Barnes | 3377 Sandstone Court | | Pleasanton | CA | 94588 | USA | 100 |
...
Whoops, too many!

SELECT * FROM Customer LIMIT 5;
+------------+-----------+----------+------------------------------+--------------+---------------+-------+------------+---------+-------------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit |
+------------+-----------+----------+------------------------------+--------------+---------------+-------+------------+---------+-------------+
1	Mary	Yates	1414 East Anderson Street	#317	Savannah	GA	31404	USA	100
2	James	Parker	29 Lucian Street		Manchester	CT	06040	USA	100
3	Kim	Bond	1421 Floral Street Northwest		Washington	DC	20012	USA	100
4	Thomas	Broadnax	1915 Southeast 29th Street		Oklahoma City	OK	73129	USA	100
5	Stephen	Williams	9805 South Youngs Lane		Oklahoma City	OK	73159	USA	100
+------------+-----------+----------+------------------------------+--------------+---------------+-------+------------+---------+-------------+
5 rows in set (0.00 sec)

Note how * is our "wildcard" for all the fields.

We can select only the fields of interest

SELECTING Fields

SELECT FirstName, LastName FROM Customer;
+-----------+----------+
| FirstName | LastName |
+-----------+----------+
Mary	Yates
James	Parker
Kim	Bond
Thomas	Broadnax
Stephen	Williams
Mark	Hinton
...
...

And we can sort them

SELECT FirstName, LastName FROM Customer ORDER BY LastName;
+-----------+----------+
| FirstName | LastName |
+-----------+----------+
Michael	Aaberg
Denver	Aaberg
Brenda	Aaberg
Mabel	Aaberg
Gary	Aaberg
Ellen	Aaberg
Frankie	Aaberg
Edward	Aaberg
...
...

We can select specific rows with the WHERE command.

SELECTING Rows

SELECT * FROM Customer WHERE CustomerId = 1;
+------------+-----------+----------+---------------------------+--------------+----------+-------+------------+---------+-------------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit |
+------------+-----------+----------+---------------------------+--------------+----------+-------+------------+---------+-------------+
| 1 | Mary | Yates | 1414 East Anderson Street | #317 | Savannah | GA | 31404 | USA | 100 |
+------------+-----------+----------+---------------------------+--------------+----------+-------+------------+---------+-------------+
1 row in set (0.00 sec)

SELECT * FROM Orders WHERE CustomerId = 1;
+---------+------------+--------------+-------------+--------+----------+------------+
| OrderId | Date | DateRequired | DateShipped | Status | Comments | CustomerId |
+---------+------------+--------------+-------------+--------+----------+------------+
390977	2007-08-09	2007-08-29	2007-09-04	OK		1
396900	2007-10-15	2007-10-21	2007-10-29	OK		1
472220	2010-02-21	2010-03-02	2010-03-10	OK		1
486581	2010-08-04	2010-08-10	2010-08-10	OK		1
487083	2010-08-10	2010-08-12	2010-08-16	OK		1
513816	2011-06-14	2011-06-22	2011-06-14	OK		1
546268	2012-06-20	2012-06-23	2012-06-28	OK		1
585992	2013-09-16	2013-09-29	2013-10-12	OK		1
+---------+------------+--------------+-------------+--------+----------+------------+
8 rows in set (0.01 sec)

AGGREGATE FUNCTIONS

There are aggregate functions that we can apply to a column of data. For example, we could find the average retail
price of all of our products

SELECT AVG(RetailPrice) FROM Product;
+------------------+
| avg(RetailPrice) |
+------------------+
| 90.173951 |
+------------------+
1 row in set (0.02 sec)

The most common aggregate function is COUNT(), frequently used to count the number of rows in a table. MAX(), MIN(),
SUM(), AVG() are others that you will see.

SELECT COUNT(*) FROM Product;
+----------+
| count(*) |
+----------+
| 20592 |
+----------+

Given that * is used in SELECT statements to select all the columns, a normal person might think that COUNT(*) is
asking to somehow count multiple columns, but it is really just allowing SQL to pick whatever column it thinks is
quickest to use to count the total number of rows in the table. Get used to this common/weird idiom.

Grouping is a very useful tool in data analysis. And we have a particular meaning for the word "grouping" in data
science. It means a rearrangement of a data table such that one of the columns becomes the rows.

After this rearrangement, we usually have to decide which of the other columns we want to keep or combine.

GROUPING

A B C D

AO B0 C0 D0

A1 B1 C1 D1

A2 B0 C2 D1

A3 B3 C3 D3

A4 B0 C4 D0

A5 B2 C5 D1

A6 B3 C6 D3

A7 B1 C7 D0

A8 B0 C8 D1

A9 B3 C9 D0

Original Table

B C(avg)

BO AVG(C0,C2,C4,C8)

B1 AVG(C1,C7)

B2 AVG(C5)

B3 AVG(C3,C6,C9)

Grouped on B, Average of C

An example might be where we are logging
pollution alarms, and the table is

If we want an quick insight into where any
serious problems are, we might want to find
the average at each station.

We don't care about the timestamps, and we
probably don't want to bring the supervisor
data along.

We do exactly what we just did at the left:
GROUP BY Station and AVG(Level).

Time Station Level Supervisor

2023-4-2-11:23 Hampton 11.3 Smith

2023-5-2-12:33 Landsdale 0.42 Li

...

As we build more complex queries, we will find it very useful, and often necessary, to alias a column or table with
AS. The alias will only exist for the duration of the query. GROUP BY will often require this.

GROUP BY and AS

SELECT CustomerId, COUNT(*) AS NumOrders
FROM Orders
GROUP BY CustomerId
ORDER BY NumOrders DESC
LIMIT 10;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
25806	25
94364	25
96968	24
33646	24
57572	23
89204	23
27518	23
29451	23
26682	23
36709	22
+------------+-----------+
10 rows in set (1.72 sec)

GROUP BY will group rows that have the same value
(CustomerID here) into summary rows, which are then used
with aggregate functions (COUNT(), MAX(), MIN(), SUM(),
AVG()) to reduce the results.

These aggregate functions reduce the data on a selected
column. Here, COUNT gives us the number in each group.

We need NumOrders to capture that value for subsequent use
in the ORDER BY.

Note the grouping can be done hierarchically. You might
group your data first by towns, and then zip codes within.

One counter intuitive, but central notion, to SQL is that the listed order of the specified commands does not correspond to the
order in which they are executed. There is a mandated order to the evaluation of the clauses.

1. FROM and JOINs
The FROM clause, and subsequent JOINs are first executed to determine the set of data that is being queried. This includes
subqueries in this clause, and can cause temporary tables to be created.

2. WHERE
Then any WHERE constraints are applied to the individual rows, and rows that do not satisfy the constraint are discarded. Each of
the constraints can only access columns directly from the tables requested in the FROM clause. Aliases in the SELECT part of the
query are not accessible since they may include expressions dependent on parts of the query that have not yet executed.

3. GROUP BY
Remaining rows after the WHERE constraints are applied are then grouped based on common values in the column specified in the
GROUP BY clause. As a result of the grouping, there will only be as many rows as there are unique values in that column. This
means that you should only use this when you have aggregate functions in your query.

4. HAVING
If the query has a GROUP BY clause, then any constraints of a HAVING clause are applied to the grouped rows. Like the WHERE
clause, aliases may also not be accessible from this step.

5. SELECT
Any expressions in the SELECT part of the query are finally computed.

6. DISTINCT
Of the remaining rows, rows with duplicate values in the column marked as DISTINCT will be discarded.

7. ORDER BY
If an ORDER BY is specified, the rows are then sorted by the specified data in either ascending or descending order. Since all
the expressions in the SELECT part of the query have been computed, you can reference aliases at this point.

8. LIMIT / OFFSET
Last, the rows that fall outside the range specified by the LIMIT and OFFSET are discarded.

ORDER OF OPERATIONS

Here is the order of operations on our previous group example.

ORDER OF OPERATIONS HERE

SELECT CustomerId, COUNT(*) AS NumOrders
FROM Orders
GROUP BY CustomerId
ORDER BY NumOrders DESC
LIMIT 10;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
25806	25
94364	25
96968	24
33646	24
57572	23
89204	23
27518	23
29451	23
26682	23
36709	22
+------------+-----------+
10 rows in set (1.72 sec)

If this seems counter to how you have been conditioned to think from normal programming, you are not alone. All I
can say is that you will have to get used to this "inside-out" thinking if you want to get truly comfortable with
SQL. Fortunately there are a limited number of idioms (patterns) to deal with and you will soon get an intuitive
understanding of the order of evaluation.

First, we determine our data set. Here it is trivial as
we have only Orders.

Then we GROUP the Orders on CustomerID.

We evaluate the SELECT. This means we need an aggregate
function to apply to each sub-group, which is to COUNT
the rows of each sub-group. We alias this count as
Numorders, because we will need to use it in the ORDER
clause later.

Last we use the SELECTED values as our output fields,
ORDERED and up to a LIMIT of 10.

We will often wish to feed one result (in the form of a table) into another query. These subqueries are created by
nesting selects within each other.

Let's say we wish to create a list of all customers with more than 20 orders.

SELECT SUBQUERIES

SELECT CustomerId, COUNT(*) AS NumOrders
FROM Orders
GROUP BY CustomerId
HAVING NumOrders > 20;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
1885	21
2311	21
2344	21
2364	21
...	
...	
88414	22
89204	23
91017	21
94364	25
96968	24
99255	22
100068	21
+------------+-----------+
51 rows in set (1.03 sec)

Note that when filtering aggregated results we must use HAVING instead of WHERE.

Now we can treat that query as a table itself. Here we just apply the count(*) to it. Next we will start connecting
these together.

SELECT SUBQUERIES

SELECT COUNT(*)
FROM (SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders;

+----------+
| COUNT(*) |
+----------+
| 51 |
+----------+
1 row in set (1.04 sec)

SQL insists that every derived table have a name (alias). So, we must name our subquery before we can use it, even
for something as trivial as this. Here our alias is a new table.

SELECT SUBQUERIES

SHOW COLUMNS FROM Customer;

+--------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+----------------+
CustomerId	int	NO	PRI	NULL	auto_increment
FirstName	varchar(50)	YES		NULL	
LastName	varchar(50)	YES		NULL	
AddressLine1	varchar(100)	YES		NULL	
AddressLine2	varchar(100)	YES		NULL	
City	varchar(50)	YES		NULL	
State	varchar(50)	YES		NULL	
PostalCode	varchar(15)	YES		NULL	
Country	varchar(50)	YES		NULL	
CreditLimit	varchar(50)	YES		NULL	
+--------------+--------------+------+-----+---------+----------------+

This might be better with more detailed customer information included. But that isn't in our Orders table. Some
obviously useful info can be found in our Customers table.

This is where the relational part of our RDBMS comes in. We want to combine data from different tables.

Our most powerful tool here will be joins.

There are a variety of these, and they have a logical relationship between them that is often summarized by their
Venn Diagrams.

However, a few examples are generally enough to get
the point across, and then this diagram will make total
sense, and you won't have to memorize anything.

Combining Table Data

This is the default "join", and most common. It is used to collect only items with matching keys from both tables.
The keys are specified with the ON clause and could be combinations of columns.

Inner Join

Implementation notes: In Pandas, these are referred to as merges.

SELECT left_table.B, right_table.F
FROM left_table
JOIN right_table
 ON left_table.A = right_table.E;

A B C D

K0 B0 C0 D0

K1 B1 C1 D1

K2 B2 C2 D2

K3 B3 C3 D3

E F G H

K1 F0 G0 H0

K1 F1 G1 H1

K0 F2 G2 H2

K6 F3 G3 H3

B F

B0 F2

B1 F0

B1 F1

The actual row order in the result could vary, unless we added an ORDER BY clause.

Left Table Right Table Result

Note that the table name is usually inferred from the FROM clause but in this JOIN columns must be disambiguated as
there are multiple CustomerIDs, one in each table.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer
 ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit | NumOrders |
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
1885	Karen	Roberge	44 Downey Drive		Manchester	CT	06040	USA	100	21
2311	Daniel	Jurado	709 Mildred Street		Montgomery	AL	36104	USA	100	21
2344	Lois	Hoskins	5631 West Colter Street	#2129	Glendale	AZ	85301	USA	100	21
2364	Arthur	Sosa	3145 19th Avenue Court		Greeley	CO	80631	USA	100	21
8049	Frances	Johnson	83 Oakdale Road		Newton	MA	02459	USA	100	22
9584	Claudia	Price	1452 55th Avenue	B	Oakland	CA	94621	USA	100	21
...
...

13803	Teresa	Pierce	154 Boca Lagoon Drive		Panama City Beach	FL	32408	USA	100	21
17740	Joseph	Grisson	8642 Yule Street		Arvada	CO	80007	USA	100	21
18420	Betty	Brown	1822 Pine Grove Court		Severn	MD	21144	USA	100	21
20647	Robert	Patton	1995 Nolensville Pike		Nashville	TN	37211	USA	100	21
25806	Kyle	Hosmer	95 Briarwood Drive		Manchester	CT	06040	USA	100	25
26682	Jana	Mapes	718 Newhall Drive		Nashville	TN	37206	USA	100	23
27518	Jason	Johnson	824 Main Street	D	Manchester	CT	06040	USA	100	23
27604	Matt	Mackey	1600 20th Street Northwest		Washington	DC	20009	USA	100	22
27982	Linda	Parks	378 Bonny Street		Grand Junction	CO	81501	USA	100	22
96968	Ellis	Chaddock	509 Sea Breeze Drive		Panama City Beach	FL	32413	USA	100	24
99255	Elaine	Soto	721 Vermont 5A		Westmore	VT	05860	USA	100	22
100068	Glenna	Lloyd	6424 Simms Street	#71	Arvada	CO	80004	USA	100	21
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
51 rows in set (1.06 sec)

Let's break this down, one subquery at a time.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
1885	21
2311	21
2344	21
2364	21
8049	22
9584	21
13803	21
...
...

Let's break this down, one subquery at a time.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
1885	21
2311	21
2344	21
2364	21
8049	22
9584	21
13803	21
...
...

+------------+-------------+-----------+-------------------------------------+--------------+----------------+-------+------------+---------+-------------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit |
+------------+-------------+-----------+-------------------------------------+--------------+----------------+-------+------------+---------+-------------+
1	Mary	Yates	1414 East Anderson Street	#317	Savannah	GA	31404	USA	100
2	James	Parker	29 Lucian Street		Manchester	CT	06040	USA	100
3	Kim	Bond	1421 Floral Street Northwest		Washington	DC	20012	USA	100
4	Thomas	Broadnax	1915 Southeast 29th Street		Oklahoma City	OK	73129	USA	100
5	Stephen	Williams	9805 South Youngs Lane		Oklahoma City	OK	73159	USA	100
6	Mark	Hinton	8642 Yule Street		Arvada	CO	80007	USA	100
7	Deborah	Lloyd	5244 West Port Au Prince Lane		Glendale	AZ	85306	USA	100
8	Linda	Barnes	3377 Sandstone Court		Pleasanton	CA	94588	USA	100
9	Donald	Zawacki	4709 North Willow Avenue		Bethany	OK	73008	USA	100
10	Rene	Spencer	1797 Pasatiempo Drive		Chico	CA	95928	USA	100
...
...

Note that each subquery follows our official Order of Operations as we work our way to the topmost query.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer
 ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit | NumOrders |
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
1885	Karen	Roberge	44 Downey Drive		Manchester	CT	06040	USA	100	21
2311	Daniel	Jurado	709 Mildred Street		Montgomery	AL	36104	USA	100	21
2344	Lois	Hoskins	5631 West Colter Street	#2129	Glendale	AZ	85301	USA	100	21
2364	Arthur	Sosa	3145 19th Avenue Court		Greeley	CO	80631	USA	100	21
8049	Frances	Johnson	83 Oakdale Road		Newton	MA	02459	USA	100	22
9584	Claudia	Price	1452 55th Avenue	B	Oakland	CA	94621	USA	100	21
...
...

13803	Teresa	Pierce	154 Boca Lagoon Drive		Panama City Beach	FL	32408	USA	100	21
17740	Joseph	Grisson	8642 Yule Street		Arvada	CO	80007	USA	100	21
18420	Betty	Brown	1822 Pine Grove Court		Severn	MD	21144	USA	100	21
20647	Robert	Patton	1995 Nolensville Pike		Nashville	TN	37211	USA	100	21
25806	Kyle	Hosmer	95 Briarwood Drive		Manchester	CT	06040	USA	100	25
26682	Jana	Mapes	718 Newhall Drive		Nashville	TN	37206	USA	100	23
27518	Jason	Johnson	824 Main Street	D	Manchester	CT	06040	USA	100	23
27604	Matt	Mackey	1600 20th Street Northwest		Washington	DC	20009	USA	100	22
27982	Linda	Parks	378 Bonny Street		Grand Junction	CO	81501	USA	100	22
96968	Ellis	Chaddock	509 Sea Breeze Drive		Panama City Beach	FL	32413	USA	100	24
99255	Elaine	Soto	721 Vermont 5A		Westmore	VT	05860	USA	100	22
100068	Glenna	Lloyd	6424 Simms Street	#71	Arvada	CO	80004	USA	100	21
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
51 rows in set (1.06 sec)

1. FROM and JOINs

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. DISTINCT

7. ORDER BY

8. LIMIT / OFFSET

ORDER OF OPERATIONS (Again)

Note that the table name is usually inferred from the FROM clause but in a JOIN columns must be disambiguated as
there are multiple CustomerIDs.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer
 ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit | NumOrders |
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
1885	Karen	Roberge	44 Downey Drive		Manchester	CT	06040	USA	100	21
2311	Daniel	Jurado	709 Mildred Street		Montgomery	AL	36104	USA	100	21
2344	Lois	Hoskins	5631 West Colter Street	#2129	Glendale	AZ	85301	USA	100	21
2364	Arthur	Sosa	3145 19th Avenue Court		Greeley	CO	80631	USA	100	21
8049	Frances	Johnson	83 Oakdale Road		Newton	MA	02459	USA	100	22
9584	Claudia	Price	1452 55th Avenue	B	Oakland	CA	94621	USA	100	21
...
...

13803	Teresa	Pierce	154 Boca Lagoon Drive		Panama City Beach	FL	32408	USA	100	21
17740	Joseph	Grisson	8642 Yule Street		Arvada	CO	80007	USA	100	21
18420	Betty	Brown	1822 Pine Grove Court		Severn	MD	21144	USA	100	21
20647	Robert	Patton	1995 Nolensville Pike		Nashville	TN	37211	USA	100	21
25806	Kyle	Hosmer	95 Briarwood Drive		Manchester	CT	06040	USA	100	25
26682	Jana	Mapes	718 Newhall Drive		Nashville	TN	37206	USA	100	23
27518	Jason	Johnson	824 Main Street	D	Manchester	CT	06040	USA	100	23
27604	Matt	Mackey	1600 20th Street Northwest		Washington	DC	20009	USA	100	22
27982	Linda	Parks	378 Bonny Street		Grand Junction	CO	81501	USA	100	22
96968	Ellis	Chaddock	509 Sea Breeze Drive		Panama City Beach	FL	32413	USA	100	24
99255	Elaine	Soto	721 Vermont 5A		Westmore	VT	05860	USA	100	22
100068	Glenna	Lloyd	6424 Simms Street	#71	Arvada	CO	80004	USA	100	21
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
51 rows in set (1.06 sec)

Let's break this down, one subquery at a time.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
1885	21
2311	21
2344	21
2364	21
8049	22
9584	21
13803	21
...
...

Let's break this down, one subquery at a time.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+
| CustomerId | NumOrders |
+------------+-----------+
1885	21
2311	21
2344	21
2364	21
8049	22
9584	21
13803	21
...
...

+------------+-------------+-----------+-------------------------------------+--------------+----------------+-------+------------+---------+-------------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit |
+------------+-------------+-----------+-------------------------------------+--------------+----------------+-------+------------+---------+-------------+
1	Mary	Yates	1414 East Anderson Street	#317	Savannah	GA	31404	USA	100
2	James	Parker	29 Lucian Street		Manchester	CT	06040	USA	100
3	Kim	Bond	1421 Floral Street Northwest		Washington	DC	20012	USA	100
4	Thomas	Broadnax	1915 Southeast 29th Street		Oklahoma City	OK	73129	USA	100
5	Stephen	Williams	9805 South Youngs Lane		Oklahoma City	OK	73159	USA	100
6	Mark	Hinton	8642 Yule Street		Arvada	CO	80007	USA	100
7	Deborah	Lloyd	5244 West Port Au Prince Lane		Glendale	AZ	85306	USA	100
8	Linda	Barnes	3377 Sandstone Court		Pleasanton	CA	94588	USA	100
9	Donald	Zawacki	4709 North Willow Avenue		Bethany	OK	73008	USA	100
10	Rene	Spencer	1797 Pasatiempo Drive		Chico	CA	95928	USA	100
...
...

Note that the table name is usually inferred from the FROM clause but in a JOIN columns must be disambiguated as
there are multiple CustomerIDs.

Inner Join Example

SELECT Customer.*, TopOrders.NumOrders FROM
(SELECT CustomerId, COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer
 ON TopOrders.CustomerId = Customer.CustomerId;

+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
| CustomerId | FirstName | LastName | AddressLine1 | AddressLine2 | City | State | PostalCode | Country | CreditLimit | NumOrders |
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
1885	Karen	Roberge	44 Downey Drive		Manchester	CT	06040	USA	100	21
2311	Daniel	Jurado	709 Mildred Street		Montgomery	AL	36104	USA	100	21
2344	Lois	Hoskins	5631 West Colter Street	#2129	Glendale	AZ	85301	USA	100	21
2364	Arthur	Sosa	3145 19th Avenue Court		Greeley	CO	80631	USA	100	21
8049	Frances	Johnson	83 Oakdale Road		Newton	MA	02459	USA	100	22
9584	Claudia	Price	1452 55th Avenue	B	Oakland	CA	94621	USA	100	21
...
...

13803	Teresa	Pierce	154 Boca Lagoon Drive		Panama City Beach	FL	32408	USA	100	21
17740	Joseph	Grisson	8642 Yule Street		Arvada	CO	80007	USA	100	21
18420	Betty	Brown	1822 Pine Grove Court		Severn	MD	21144	USA	100	21
20647	Robert	Patton	1995 Nolensville Pike		Nashville	TN	37211	USA	100	21
25806	Kyle	Hosmer	95 Briarwood Drive		Manchester	CT	06040	USA	100	25
26682	Jana	Mapes	718 Newhall Drive		Nashville	TN	37206	USA	100	23
27518	Jason	Johnson	824 Main Street	D	Manchester	CT	06040	USA	100	23
27604	Matt	Mackey	1600 20th Street Northwest		Washington	DC	20009	USA	100	22
27982	Linda	Parks	378 Bonny Street		Grand Junction	CO	81501	USA	100	22
96968	Ellis	Chaddock	509 Sea Breeze Drive		Panama City Beach	FL	32413	USA	100	24
99255	Elaine	Soto	721 Vermont 5A		Westmore	VT	05860	USA	100	22
100068	Glenna	Lloyd	6424 Simms Street	#71	Arvada	CO	80004	USA	100	21
+------------+-----------+-------------+----------------------------+--------------+-------------------+-------+------------+---------+-------------+-----------+
51 rows in set (1.06 sec)

As our queries, and subqueries, get more complex it becomes cumbersome and inefficient to keep recreating them. A
VIEW will give us the ability to capture these as temporary tables.

Views

CREATE VIEW TopCustomers AS
SELECT Customer.* FROM (SELECT CustomerId, COUNT(*) AS NumOrders
FROM Orders
 GROUP BY CustomerId
 HAVING NumOrders > 20) AS TopOrders
JOIN Customer
 ON TopOrders.CustomerId = Customer.CustomerId;

SHOW TABLES;

+-------------------+
| Tables_in_urbanic |
+-------------------+
| Customer |
| Line |
| OrderDetail |
| Orders |
| Product |
| TopCustomers |
| Vendor |
+-------------------+
7 rows in set (0.00 sec)

Marketing has asked us to identify all the leather products customers have ordered.

A Useful View

CREATE VIEW LeatherOrders AS
SELECT Orders.*, orderprod.Fabric, orderprod.ProductId, orderprod.Item, orderprod.Color
FROM Orders
INNER JOIN (SELECT OrderDetail.OrderId, Product.Fabric, Product.ProductId, Product.Item, Product.Color
 FROM OrderDetail
 INNER JOIN Product
 ON OrderDetail.ProductId = Product.ProductId) AS orderprod
ON Orders.OrderId = orderprod.OrderId
WHERE orderprod.Fabric
LIKE 'Leather%'
ORDER BY Orders.OrderId;

+---------+------------+--------------+-------------+--------+----------+------------+---------+-----------+-----------+---------+
| OrderId | Date | DateRequired | DateShipped | Status | Comments | CustomerId | Fabric | ProductId | Item | Color |
+---------+------------+--------------+-------------+--------+----------+------------+---------+-----------+-----------+---------+
14	1995-05-23	1995-06-11	1995-06-10	OK		28781	Leather	21876	Slacks	White
18	1995-05-23	1995-05-29	1995-05-29	OK		57443	Leather	27031	Blazer	Silver
20	1995-05-23	1995-05-23	1995-05-26	OK		73528	Leather	22949	Dungarees	Cyan
22	1995-05-23	1995-05-30	1995-06-10	OK		30334	Leather	39039	Fedora	Pink
34	1995-05-23	1995-06-04	1995-06-04	OK		13149	Leather	36187	Swimsuit	Magenta
40	1995-05-23	1995-06-07	1995-06-04	OK		66536	Leather	39541	Scarf	Orange
60	1995-05-23	1995-06-04	1995-06-04	OK		71618	Leather	22458	Pants	Plum
65	1995-05-23	1995-06-02	1995-06-03	OK		62043	Leather	40680	Jacket	Navy
69	1995-05-23	1995-06-02	1995-05-23	OK		46767	Leather	40748	Jacket	Bl
...
...
...

We can match strings with the LIKE keyword and the '%' symbol works as a wildcard.

We wish to include all of our top customers in a possible "Leather Sale" promotion even if they don't have a leather
order.

LEFT JOIN will include all elements from the left table and matching ones from the right table. Unmatched values will
be shown as NULL.

More Joins

SELECT TopCustomers.customerID,LeatherOrders.OrderId,LeatherOrders.Fabric
FROM TopCustomers
LEFT JOIN LeatherOrders
 ON TopCustomers.CustomerId = LeatherOrders.CustomerId;

+------------+---------+---------+
| CustomerId | OrderId | Fabric |
+------------+---------+---------+
1885	81257	Leather
1885	238207	Leather
2364	359837	Leather
2364	488584	Leather
...		
...		
39578	414186	Leather
39578	650871	Leather
39578	705664	Leather
41072	NULL	NULL
47511	529563	Leather
47511	676164	Leather
50446	598894	Leather
50446	821076	Leather
51859	660109	Leather
52328	160968	Leather
52328	750126	Leather
+------------+---------+---------+

We can match strings with the LIKE keyword and the '%' symbol works as a wildcard.

LEFT JOIN will include all elements from the left table and matching ones from the right table. Unmatched values will
be shown as NULL.

Left Join

Implementation notes: In Pandas, these are referred to as merges.

SELECT left_table.B, right_table.F
FROM left_table
LEFT JOIN right_table
 ON left_table.A = right_table.E;

A B C D

K0 B0 C0 D0

K1 B1 C1 D1

K2 B2 C2 D2

K3 B3 C3 D3

E F G H

K1 F0 G0 H0

K1 F1 G1 H1

K0 F2 G2 H2

K6 F3 G3 H3

B F

B0 F2

B1 F0

B1 F1

B2 NULL

B3 NULL

The actual row order in the result could vary, unless we added an ORDER BY clause.

Left Table Right Table Result

As you might expect by now, RIGHT JOIN will include all elements from the right table and matching ones from the left
table. Unmatched values will be shown as NULL.

Right Join

Implementation notes: In Pandas, these are referred to as merges.

SELECT left_table.B, right_table.F
FROM left_table
RIGHT JOIN right_table
 ON left_table.A = right_table.E;

A B C D

K0 B0 C0 D0

K1 B1 C1 D1

K2 B2 C2 D2

K3 B3 C3 D3

E F G H

K1 F0 G0 H0

K1 F1 G1 H1

K0 F2 G2 H2

K6 F3 G3 H3

B F

B1 F0

B1 F1

B0 F2

NULL F3

The actual row order in the result could vary, unless we added an ORDER BY clause.

Left Table Right Table Result

We'd also like to know which products haven't been of interest to top customers. We'll do a RIGHT JOIN to find all the
leather products with no orders by this group. We also use the keyword IN in this query to filter down to only
TopCustomer orders. Other comparison operators we will see are NOT IN, BETWEEN, IS, IS NOT, IS NOT NULL.

Another Interesting Join

SELECT topLeatherOrders.OrderId, topLeatherOrders.CustomerId, LeatherProduct.Color, LeatherProduct.Fabric,
 LeatherProduct.Item, LeatherProduct.ProductId
FROM (SELECT *
 FROM LeatherOrders
 WHERE LeatherOrders.CustomerId IN (SELECT CustomerId FROM TopCustomers)) AS topLeatherOrders
 RIGHT JOIN (SELECT ProductId, Fabric, Color, Item FROM Product WHERE Fabric LIKE 'Leather%') AS LeatherProduct
 ON topLeatherOrders.ProductId = LeatherProduct.ProductId
LIMIT 10;

+---------+------------+--------+---------+-------+-----------+
| OrderId | CustomerId | Color | Fabric | Item | ProductId |
+---------+------------+--------+---------+-------+-----------+
NULL	NULL	Red	Leather	Skirt	20659
NULL	NULL	Navy	Leather	Skirt	20660
NULL	NULL	Cyan	Leather	Skirt	20661
NULL	NULL	Black	Leather	Skirt	20662
NULL	NULL	Brown	Leather	Skirt	20663
234297	17740	Ocher	Leather	Skirt	20664
NULL	NULL	Orange	Leather	Skirt	20665
NULL	NULL	White	Leather	Skirt	20666
NULL	NULL	Green	Leather	Skirt	20667
NULL	NULL	Puce	Leather	Skirt	20668
+---------+------------+--------+---------+-------+-----------+
10 rows in set (1.14 sec)

The NULL entries in the left table are what we're after here, so we can add one more clause. NULL values require the
IS keyword since a value can not be equal to NULL. IS tests for values that are either TRUE, FALSE or NULL.

One last refinement

SELECT OrderId, CustomerId, LeatherProduct.Color, LeatherProduct.Fabric, LeatherProduct.Item,
 LeatherProduct.ProductId
FROM (SELECT *
 FROM LeatherOrders
 WHERE LeatherOrders.CustomerId IN (SELECT CustomerId FROM TopCustomers)) AS topLeatherOrders
 RIGHT JOIN (SELECT ProductId,Fabric,Color,Item FROM Product WHERE Fabric LIKE 'Leather%') AS LeatherProduct
 ON topLeatherOrders.ProductId = LeatherProduct.ProductId
 WHERE OrderId IS NULL
LIMIT 10;

+---------+------------+--------+---------+-------+-----------+
| OrderId | CustomerId | Color | Fabric | Item | ProductId |
+---------+------------+--------+---------+-------+-----------+
NULL	NULL	Red	Leather	Skirt	20659
NULL	NULL	Navy	Leather	Skirt	20660
NULL	NULL	Cyan	Leather	Skirt	20661
NULL	NULL	Black	Leather	Skirt	20662
NULL	NULL	Brown	Leather	Skirt	20663
NULL	NULL	Orange	Leather	Skirt	20665
NULL	NULL	White	Leather	Skirt	20666
NULL	NULL	Green	Leather	Skirt	20667
NULL	NULL	Puce	Leather	Skirt	20668
NULL	NULL	Pink	Leather	Skirt	20669
+---------+------------+--------+---------+-------+-----------+

You notice how we loop through the keys as we manually create our joins. This is what our database must do as
well. Nested joins turn into nested loops. Here is a typical query from a classic film rental database.

SELECT CONCAT(customer.last_name, ', ', customer.first_name)
 AS customer, address.phone, film.title FROM rental
INNER JOIN customer ON rental.customer_id = customer.customer_id
INNER JOIN address ON customer.address_id = address.address_id
INNER JOIN inventory ON rental.inventory_id = inventory.inventory_id
INNER JOIN film ON inventory.film_id = film.film_id
WHERE rental.return_date IS NULL
AND rental_date + INTERVAL film.rental_duration DAY < CURRENT_DATE()
LIMIT 5;

Joins are Loops

This is how MySQL Workbench
explains the operations.

If we are trying to quickly equate things from two tables, you might imagine that the
organization of those tables might have a major effect on performance. Indeed, the correct
selection of keys for each table is the most important consideration.

There are a variety of key types. Two are very important.

Primary Key
A column (or possibly combination of columns!) with unique values.

Foreign Key
A column whose values point to a Primary Key in a different table.

There are other terms for keys that are less important to know. Candidate Keys are any keys
that could be a Primary Key. A Unique Key could have a single NULL value (which is not allowed
for a Primary Key). A Composite Key is a key created from multiple columns, etc.

Keys

Primary Keys are very important as the database can use that as an index to allow us to
quickly find a record. This is usually via a good hashing algorithm.

When we are doing a join, this allows us to quickly find any two items we are wishing to
compare.

This is why we really prefer our joins to use the assigned table keys if possible.

Keys

Keys can also aid greatly in ensuring data integrity.

If it is the case that every record should be unique
(order #s, for example), then using that as the primary
key will enforce that condition.

A necessary relationship between data in different tables
can be enforced with foreign keys. If an Order table uses
a customer ID as a foreign key, they will ensure that a
matching customer exists in a Customer data table.

A common default Primary Key is simply an integer that
might be auto-incremented as each new record is added. In
Pandas we always have a row number.

You won't get very far in data science without hearing about how hashing is used to organize
important data. It is by far the most common way to index any substantial RDBMS table.

In this context, a hashing algorithm's job is to take a key and use it to generate an index into
the data storage.

From the mathematical perspective, it takes some string - of possibly arbitrary length - and
generates a fixed size number. In general this means that it can't guarantee the uniqueness of
that number, but you hope it does a good job of distributing the indices around. And, you hope
it is fast.

Hashing

A collision can occur, and we have various schemes to cope
with that.

Without hashes, looking for "John Smith" requires us to
either dig through all the stored data, or sort our data
based upon the keys. This latter sounds reasonable (and
sometimes is), but doesn't work so well if we are
frequently adding or deleting data.

In our case, picture how important this is as our joins are
looping over our keys and have to retrieve each key's
associated values as quickly as possible.

So far we have just been analyzing our data. We haven't been creating, or even modifying it. Let
do that.

CREATE DATABASE clothing;

CREATE TABLE vendors (
 vendorId int NOT NULL AUTO_INCREMENT, vendorName varchar(100) DEFAULT NULL, addressLine1 varchar(100) DEFAULT NULL,
 addressLine2 varchar(100) DEFAULT NULL, city varchar(50) DEFAULT NULL, state varchar(50) DEFAULT NULL,
 postalCode varchar(15) DEFAULT NULL, country varchar(50) DEFAULT NULL,
PRIMARY KEY (vendorId)
);

show columns from vendors;
+--------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+----------------+
vendorId	int	NO	PRI	NULL	auto_increment
vendorName	varchar(100)	YES		NULL	
addressLine1	varchar(100)	YES		NULL	
addressLine2	varchar(100)	YES		NULL	
city	varchar(50)	YES		NULL	
state	varchar(50)	YES		NULL	
postalCode	varchar(15)	YES		NULL	
country	varchar(50)	YES		NULL	
+--------------+--------------+------+-----+---------+----------------+

Let's get creative.

ALTER TABLE vendors ADD COLUMN comment VARCHAR(200);

show columns from vendors;

+--------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+----------------+
vendorId	int	NO	PRI	NULL	auto_increment
vendorName	varchar(100)	YES		NULL	
addressLine1	varchar(100)	YES		NULL	
addressLine2	varchar(100)	YES		NULL	
city	varchar(50)	YES		NULL	
state	varchar(50)	YES		NULL	
postalCode	varchar(15)	YES		NULL	
country	varchar(50)	YES		NULL	
comment	varchar(200)	YES		NULL	
+--------------+--------------+------+-----+---------+----------------+

Altering Existing Tables

INSERT INTO vendors(vendorName,addressLine1,addressLine2,city,state,postalCode,country,comment) VALUES ('ThreadBlasters','123
Imaginary Place',NULL,'Sampletown','PA','15217','USA',NULL);

SELECT * FROM vendors;

+----------+----------------+---------------------+--------------+------------+-------+------------+---------+---------+
| vendorId | vendorName | addressLine1 | addressLine2 | city | state | postalCode | country | comment |
+----------+----------------+---------------------+--------------+------------+-------+------------+---------+---------+
| 1 | ThreadBlasters | 123 Imaginary Place | NULL | Sampletown | PA | 15217 | USA | NULL |
+----------+----------------+---------------------+--------------+------------+-------+------------+---------+---------+

Inserting Data

UPDATE vendors SET vendorName = 'ThreadBlazers' WHERE vendorId = 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

SELECT * FROM vendors;
+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+
| vendorId | vendorName | addressLine1 | addressLine2 | city | state | postalCode | country | comment |
+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+
| 1 | ThreadBlazers | 123 Imaginary Place | NULL | Sampletown | PA | 15217 | USA | NULL |
+----------+---------------+---------------------+--------------+------------+-------+------------+---------+---------+
1 row in set (0.00 sec)

Updating Data

DELETE FROM vendors WHERE city = 'Sampletown';Query OK, 1 row affected (0.00 sec)
Query OK, 1 row affected (0.00 sec)

SELECT * FROM vendors;
Empty set (0.00 sec)

Deleting Tables

DROP TABLE vendors;
Query OK, 0 rows affected (0.02 sec)

SELECT * FROM vendors;
ERROR 1146 (42S02): Table ‘clothing.vendors' doesn't exist

Deleting Data

Consider a typical website, which asks the user to enter their username. It then constructs a
string to use in querying the database for that user's info:

var statement = "SELECT * FROM users WHERE name = '" + userName + "'";

This seems reasonable. However, what if a nefarious user enters this as their username:

a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

Then the SQL command that gets constructed is

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't';

And we have not only exposed all user data, but also deleted our users table.

Good practices can help to mitigate this and sanitize the inputs. Be aware.

SQL Injection Attacks

Any serious, semester-long, SQL course will spend some time talking about Normalization. This is
the very formal process of eliminating redundant data and ensuring consistency. If you are a DB
admin working for a bank, you should probably know what this is.

Otherwise, common sense and an understanding of what you are asking of the database is usually
sufficient, especially for scientific data bases.

Normalization

And it is important to note
that databases are frequently
denormalized to help with
performance. A redundant field
may avoid an expensive join.

ACID is a set of properties of database transactions intended to guarantee data validity despite errors,
power failures, and other mishaps. In the context of databases, a sequence of database operations that
satisfies the ACID properties (which can be perceived as a single logical operation on the data) is
called a transaction. For example, a transfer of funds from one bank account to another, even involving
multiple changes such as debiting one account and crediting another, is a single transaction.

Atomicity
An atomic system must guarantee atomicity in each and every situation, including power failures, errors,
and crashes. A guarantee of atomicity prevents updates to the database from occurring only partially,
which can cause greater problems than rejecting the whole series outright.

Consistency
Consistency ensures that a transaction can only bring the database from one consistent state to another,
preserving database invariants: any data written to the database must be valid according to all defined
rules, including constraints, cascades, triggers, and any combination thereof. This prevents database
corruption by an illegal transaction.

Isolation
Isolation ensures that concurrent execution of transactions leaves the database in the same state that
would have been obtained if the transactions were executed sequentially.

Durability
Durability guarantees that once a transaction has been committed, it will remain committed even in the
case of a system failure (e.g., power outage or crash). This usually means that completed transactions
(or their effects) are recorded in non-volatile memory.

ACID

Triggers allow us to dynamically enforce conditions and check integrity whenever certain
actions occur. We'll just discuss this simple example, but they can involve some complex
behavior and take advantage of some of the more dynamic programming capabilities of SQL like
variables and control flow.

CREATE TRIGGER upd_check BEFORE UPDATE ON account
FOR EACH ROW
BEGIN
 IF NEW.amount < 0 THEN
 SET NEW.amount = 0;
 ELSEIF NEW.amount > 100 THEN
 SET NEW.amount = 100;
 END IF;
END;

Triggers

Since we have strayed into the programmatic capabilities of SQL, I must at least mention stored
procedures.

The simplest ones look like

CREATE PROCEDURE SelectAllCustomers
AS
SELECT * FROM Customers
GO;

EXEC SelectAllCustomers;

But, what is the point of that? In reality, these are used to capture serious business logic
and have features like:

• Parameters
• Variables
• Conditional Statements: IF, CASE
• Loops: LOOP, WHILE, REPEAT

None of this should intimidate any basic programmer, but we aren't going to dive into the
details here.

Procedures

MySQL is a server, and Connectors allow clients using other languages to connect to the
databases. This is extremely common in web applications, which are written in their own native
languages (Javascript or maybe a Java backend). Here is a query to our database from Python:

import datetime
import mysql.connector

cnx = mysql.connector.connect(user=‘adaptuser', database=‘clothing')
cursor = cnx.cursor()

query = ("SELECT orderId, orderDate FROM orders "
 "WHERE orderDate BETWEEN %s AND %s")

sale_start = datetime.date(1999, 1, 1)
sale_end = datetime.date(1999, 12, 31)

cursor.execute(query, (sale_start, sale_end))

for (orderId, orderDate) in cursor:
 print(“Order {} placed on {:%d %b %Y}".format(
 orderId, orderDate))

cursor.close()
cnx.close()

Connectors

There are many ways to get data into and out of a database. The most direct is from a text
file, although formats such as XML are supported too. LOAD DATA will do this and has many
options. The most basic looks like this

LOAD DATA LOCAL INFILE '/path/product.txt' INTO TABLE product;

Likewise, output can be done with a SELECT statement using INTO OUTFILE

SELECT * FROM orders WHERE orderDate < '1997-01-01' LIMIT 100 INTO OUTFILE 'MySQLHomework.txt’;

Input and Output

There is of course much we haven't covered and, even considering the topics we have, you want to
have some documentation as a guide. The best place to go is

https://dev.mysql.com/doc/refman/8.1/en/

And, I like to have a "cheat sheet" by my side every time I have to revisit this subject. There
are some really nice ones:

Just the first pages shown. Go to the URLs to get the full ones.

Documentation

https://dev.mysql.com/doc/refman/8.1/en/

MySQL includes functions that allow us to measure geographic distance. This is a lightweight
introduction to the important data science domain of Geographic Information Systems (GIS).

We are going to draw upon a Zips table that you have already have in your database. Amongst the
other fields, you can find the geographic center of each zip code (in the US these are the same
as Postal Codes). That will be sufficient location resolution for our next task.

We can find our Customer’s (rough) locations from this:

SELECT CustomerID, Lng, Lat, PostalCode
FROM Customer
JOIN Zips
 ON Customer.PostalCode = Zips.zip;

Or we can find the coordinates for one particular Cambridge,
MA zip code, 02139:

SELECT Lng, Lat FROM Zips WHERE Zip = 02139;

A little GIS

Let’s find out how far away from Cambridge customer number 1 is. ST_DISTANCE_SPHERE() takes
coordinates in the order longitude then latitude and returns a distance in meters:

SELECT CustomerId, Lng, Lat, Zip,
 ST_DISTANCE_SPHERE(POINT(Lng,Lat), POINT(-71.10253,42.36224)) AS distance
FROM Customer JOIN Zips on PostalCode = Zip
WHERE CustomerId = 1;

+------------+-----------+----------+-------+--------------------+
| CustomerId | Lng | Lat | Zip | distance |
+------------+-----------+----------+-------+--------------------+
| 1 | -81.05367 | 32.05064 | 31404 | 1443923.3563356877 |
+------------+-----------+----------+-------+--------------------+

1443 kilometers. Pretty far!

ST_DISTANCE_SPHERE

Assignment Drone Delivery Deployment

Our company is going to test a drone delivery service, and we wish to find the three best

launch sites within 100 km of our Cambridge, MA headquarters (in zip code 02139). The drones

can only fly a few km from their launch site. The 100 km limit is so our service techs don't have

to commute too far.

Our initial search will consider which zip codes, within that eligible radius, have the most orders.

We will locate our three sites within those three zip codes.

We could probably do a more in-depth analysis and consider the relative locations of the sites,

or clusters of zip codes that might be within flight range of our drones. But we will start with

this basic approach.

Your final email submission must include:

• Your SQL script

• Your answer

This assignment is due Noctober 55th. We will review that day, so no late credit is possible. This is 5 points of your grade, because it shouldn't
take much effort. Nevertheless, I suggest you don't wait until the last minute.

Solution Review:

Drone Delivery with SQL

There is no one correct answer, and there are several reasonable paths to the solution (as well
as countless awkward - but acceptable - ones).

My initial thought was to do the obvious, in which case I would:

1. Find the eligible zip codes
 a) Get the coordinates for all the zip codes
 b) Get the distances from Cambridge
 c) Keep only those <100km

2. Get the orders for each zipcode
 Maybe I should could have tried to process only those from step 1...
 but this approach was stupidly obvious and lazy and and we aren't
 grading on performance, today. You may have been smarter.

3. Use the first step to filter the results of the second step
 In other words, inner join the first table with the second

4. Now just sort the results and take the top 3

My Plan

Find The Eligible Zip Codes

This is the obvious thing to do with the GIS distance function:

SELECT Zip
FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point(-71.10253,42.36224)) < 100000

But, we really shouldn't hard code this number in there, so I computed it properly

SELECT Zip
FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point((SELECT Lng FROM Zips WHERE Zip=02139),(SELECT Lat FROM Zips WHERE Zip=02139))) < 100000;

+------+
| Zip |
+------+
| 2133 |
| 2203 |
| 2205 |
| 2872 |
| 2542 |
...
...
| 2115 |
| 2113 |
+------+
552 rows in set (0.21 sec)

Looks reasonable. We found 552 zip codes.

Get The Order Counts For Each Zip Code

This looks a lot like what we did in our GROUP BY example earlier. Let's do the analog here:

SELECT PostalCode, count(*) AS OrdersInPostalCode
FROM Orders
JOIN
Customer
 ON Orders.CustomerID=Customer.CustomerID
GROUP BY PostalCode;

+------------+--------------------+
| PostalCode | OrdersInPostalCode |
+------------+--------------------+
01001	819
01007	812
01010	868
01020	751
01027	1649
...	
...	
...	
99518	7361
99567	4878
99577	14453
99603	809
99611	1530
99669	763
+------------+--------------------+
684 rows in set (19.83 sec)

Note that this step does take some time. We might want to consider implementing our logic so that we only perform
this on the eligible zip codes.

Combine The First Two Steps

Now I have a list of eligible zip codes, and I have all the zip code order counts. Sounds like I just want to
find the common items: an inner join. Something like

SELECT Results_I_Want_Displayed
FROM Eligible_Zips
JOIN
Orders_by_Zip
 ON Zips_as_key

Now we just cut and paste the right stuff from our first two queries. However, after we do that we will find
that we need to alias those tables/queries so that we can properly specify the keys and results.

Building Our Query

Here is what I ended up with.

SELECT AllowedZips.Zip, OrdersByPostalCode.OrdersInThisPostalCode
FROM
(SELECT Zip
 FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point((SELECT Lng FROM Zips WHERE Zip=02139),(SELECT Lat FROM Zips WHERE Zip=02139))) < 100000
) AS AllowedZips
JOIN
(SELECT PostalCode, count(*) AS OrdersInThisPostalCode
 FROM Orders
 JOIN
 Customer
 ON Orders.CustomerID=Customer.CustomerID
 GROUP BY PostalCode) AS OrdersByPostalCode
ON
OrdersByPostalCode.PostalCode=AllowedZips.Zip;

+------+------------------------+
| Zip | OrdersInThisPostalCode |
+------+------------------------+
1010	868
1031	676
1331	2538
1420	737
1440	1529
...	
...	
...	
2745	1670
2747	781
2748	815
2766	711
2790	899
+------+------------------------+
108 rows in set (21.89 sec)

The Two Subqueries

Let's make sure you understand the pieces. Here are our two original queries.

SELECT AllowedZips.Zip, OrdersByPostalCode.OrdersInThisPostalCode
FROM
(SELECT Zip
 FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point((SELECT Lng FROM Zips WHERE Zip=02139),(SELECT Lat FROM Zips WHERE..< 100000
) AS AllowedZips
JOIN
(SELECT PostalCode, count(*) AS OrdersInThisPostalCode
 FROM Orders
 JOIN
 Customer
 ON Orders.CustomerID=Customer.CustomerID
 GROUP BY PostalCode) AS OrdersByPostalCode
ON
OrdersByPostalCode.PostalCode=AllowedZips.Zip;

Results

These are our results. Also make sure you see how the aliases are used here.

SELECT AllowedZips.Zip, OrdersByPostalCode.OrdersInThisPostalCode
FROM
(SELECT Zip
 FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point((SELECT Lng FROM Zips WHERE Zip=02139),(SELECT Lat FROM Zips WHERE Zip=02139))) < 100000
) AS AllowedZips
JOIN
(SELECT PostalCode, count(*) AS OrdersInThisPostalCode
 FROM Orders
 JOIN
 Customer
 ON Orders.CustomerID=Customer.CustomerID
 GROUP BY PostalCode) AS OrdersByPostalCode
ON
OrdersByPostalCode.PostalCode=AllowedZips.Zip;

+------+------------------------+
| Zip | OrdersInThisPostalCode |
+------+------------------------+
1010	868
1031	676
1331	2538
1420	737
1440	1529
...	
...	
...	
2745	1670
2747	781
2748	815
2766	711
2790	899
+------+------------------------+

Final Answer

All that remains is to sort and select the top 3.

SELECT AllowedZips.Zip, OrdersByPostalCode.OrdersInThisPostalCode
FROM
(SELECT Zip
 FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point((SELECT Lng FROM Zips WHERE Zip=02139),(SELECT Lat FROM Zips WHERE Zip=02139))) < 100000
) AS AllowedZips
JOIN
(SELECT PostalCode, count(*) AS OrdersInThisPostalCode
 FROM Orders
 JOIN
 Customer
 ON Orders.CustomerID=Customer.CustomerID
 GROUP BY PostalCode) AS OrdersByPostalCode
ON
OrdersByPostalCode.PostalCode=AllowedZips.Zip
ORDER BY OrdersByPostalCode.OrdersInThisPostalCode DESC
LIMIT 3;

+------+------------------------+
| Zip | OrdersInThisPostalCode |
+------+------------------------+
2169	4688
2155	4127
2446	2622
+------+------------------------+
3 rows in set (18.13 sec)

Actual Variables

One thing that seems especially awkward is the way we had to refer to our fixed Cambridge Lng and Lat values. This
begged for a "do it once" solution. Indeed we do have regular variables we can use for these tasks.

SET @HeadquartersLng = (SELECT Lng FROM Zips WHERE Zip=02139);
SET @HeadquartersLat = (SELECT Lat FROM Zips WHERE Zip=02139);

And our solution cleans up a bit.

SELECT AllowedZips.Zip, OrdersByPostalCode.OrdersInThisPostalCode
FROM
(SELECT Zip
 FROM Zips
 WHERE ST_Distance_Sphere(point(Lng,Lat),point(@HeadquartersLng,@HeadquartersLat)) < 100000) AS AllowedZips
JOIN
(SELECT PostalCode, count(*) AS OrdersInThisPostalCode
 FROM Orders
 JOIN
 Customer
 ON Orders.CustomerID=Customer.CustomerID
 GROUP BY PostalCode) AS OrdersByPostalCode
ON
OrdersByPostalCode.PostalCode=AllowedZips.Zip
ORDER BY OrdersByPostalCode.OrdersInThisPostalCode DESC
LIMIT 3;

Why didn't I mention this capability earlier? Mostly because you might tend to start thinking like a sequential
programming, using variables to move from one state to the next. The standard SQL paradigm is to build these
"inside out" queries instead, and you have to understand that if you want to swim in those waters. But in this
case, this is perfectly acceptable.

A Little More Efficient

As mentioned earlier, we could also be a little more thoughtful about minimizing the larger joins or groupings by
eliminating ineligible zip codes early. Here is an approach using that philosophy.

SELECT COUNT(*) as ordersbyzip, PostalCode
FROM Orders
JOIN Customer
 ON Orders.CustomerId = Customer.CustomerId
 WHERE Customer.PostalCode IN (SELECT DISTINCT distances.PostalCode
 FROM (SELECT * FROM
 (SELECT Customer.PostalCode,ST_Distance_Sphere(point(Lng,Lat),
 point((SELECT Lng FROM Zips WHERE Zip = 02139),
 (SELECT Lat FROM Zips WHERE Zip = 02139))) AS distance
 FROM Customer
 JOIN Zips
 ON PostalCode = Zip) AS alldistances
 WHERE alldistances.distance < 100000)
 AS distances)
GROUP BY PostalCode
ORDER BY ordersbyzip DESC
LIMIT 3;

+-------------+------------+
| ordersbyzip | PostalCode |
+-------------+------------+
4688	02169
4127	02155
2622	02446
+-------------+------------+
3 rows in set (7.23 sec)

This is well over twice as fast. These kind of optimizations abound in the SQL database world.

An Interesting Submission

A submission from an earlier student had an interesting approach.

SELECT Zip, COUNT(OrderId) AS NumOrders
FROM
(SELECT CustomerId, Lng, Lat, Zip, ST_DISTANCE_SPHERE(POINT(Lng,Lat), POINT(-71.10253,42.36224)) AS distance
 FROM Customer JOIN Zips on PostalCode = Zip HAVING distance <100000) AS WithinRadius
JOIN
Orders
 ON WithinRadius.CustomerId = Orders.CustomerId
GROUP BY Zip
ORDER BY NumOrders DESC
LIMIT 3;

The peculiar thing here is this bit:

SELECT CustomerId, Lng, Lat, Zip, ST_DISTANCE_SPHERE(POINT(Lng,Lat), POINT(-71.10253,42.36224)) AS distance
FROM
Customer
JOIN Zips
 ON PostalCode = Zip
 HAVING distance <100000

HAVING should only be used with GROUP BY. The answer here can be found in the MySQL Reference Manual:

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or columns used in aggregate functions. However, MySQL supports
an extension to this behavior...

It then goes on to explain the complications involved with this extension. Don't do this.

	Slide 1: ADAPT Module Intro to Data Science with Pandas and SQL
	Slide 2: The landscape today.
	Slide 3: Data Science Today
	Slide 4: Pandas
	Slide 5: Our First Dataset
	Slide 6: Getting Started with Pandas
	Slide 7: DataFrame Queries
	Slide 8: DataFrame Queries
	Slide 9: DataFrame Conditional Queries
	Slide 10: DataFrame Sorting
	Slide 11: If you like pictures (matplotlib)
	Slide 12: Assignment: Can we find a significant survival variable?
	Slide 13: Solution Review: Titanic with Pandas
	Slide 14: Getting Started with Titanic
	Slide 15: How did the women fare?
	Slide 16: Women and children first!?
	Slide 17: NaNs are everywhere!
	Slide 18: Women and children first!
	Slide 19: How did Thurston Howell III make out?
	Slide 20: Grouping
	Slide 21: SQL
	Slide 22: What is a "Relational Database"?
	Slide 23: What Is MySQL?
	Slide 24: Starting MySQL
	Slide 25: Showing Our Tables
	Slide 26: Showing Table Fields
	Slide 27: MySQL Workbench
	Slide 28: SELECT
	Slide 29: SELECTING Fields
	Slide 30: SELECTING Rows
	Slide 31: AGGREGATE FUNCTIONS
	Slide 32: GROUPING
	Slide 33: GROUP BY and AS
	Slide 34: ORDER OF OPERATIONS
	Slide 35: ORDER OF OPERATIONS HERE
	Slide 36: SELECT SUBQUERIES
	Slide 37: SELECT SUBQUERIES
	Slide 38: SELECT SUBQUERIES
	Slide 39: Combining Table Data
	Slide 40: Inner Join
	Slide 41: Inner Join Example
	Slide 42: Inner Join Example
	Slide 43: Inner Join Example
	Slide 44: Inner Join Example
	Slide 45: ORDER OF OPERATIONS (Again)
	Slide 46: Inner Join Example
	Slide 47: Inner Join Example
	Slide 48: Inner Join Example
	Slide 49: Inner Join Example
	Slide 50: Views
	Slide 51: A Useful View
	Slide 52: More Joins
	Slide 53: Left Join
	Slide 54: Right Join
	Slide 55: Another Interesting Join
	Slide 56: One last refinement
	Slide 57: Joins are Loops
	Slide 58: Keys
	Slide 59: Keys
	Slide 60: Hashing
	Slide 61: Let's get creative.
	Slide 62: Altering Existing Tables
	Slide 63: Inserting Data
	Slide 64: Updating Data
	Slide 65: Deleting Data
	Slide 66: SQL Injection Attacks
	Slide 67: Normalization
	Slide 68: ACID
	Slide 69: Triggers
	Slide 70: Procedures
	Slide 71: Connectors
	Slide 72: Input and Output
	Slide 73: Documentation
	Slide 74: A little GIS
	Slide 75: ST_DISTANCE_SPHERE
	Slide 76: Assignment Drone Delivery Deployment
	Slide 77: Solution Review: Drone Delivery with SQL
	Slide 78: My Plan
	Slide 79: Find The Eligible Zip Codes
	Slide 80: Get The Order Counts For Each Zip Code
	Slide 81: Combine The First Two Steps
	Slide 82: Building Our Query
	Slide 83: The Two Subqueries
	Slide 84: Results
	Slide 85: Final Answer
	Slide 86: Actual Variables
	Slide 87: A Little More Efficient
	Slide 88: An Interesting Submission

