
John Urbanic
Parallel Computing Scientist

Distinguished Service Professor

Pittsburgh Supercomputing Center

Copyright 2023

ADAPT Introductory Modules

for

 Data Science and Machine Learning

Some
Introductory
Comments

Development Status
• Our intention way, way back in April, was that these would be 2 completely defined 4-

class modules. Today would have been a detailed morning walk-through ("teach the
teacher") of Module 1, and an afternoon walkthrough of Module 2.

• We came to realize that this community has other summer session priorities, and our
development could not proceed in a vacuum, without your expertise and feedback.

• We have adopted a more flexible approach to today's launch. We are presenting the
content as a whole, and welcoming your adoption as you see fit.

• This is not a generally scalable approach. We will have to standardize the module
content. As soon as next semester.

• As such, your use and feedback this semester will be very influential in the shape that
this program assumes.

The Plan
• Our original plan was to start with these "beginner" modules. Which we have done.

• This was actually the most effort-intensive content to develop as it was a gap in our
existing materials. We generally start just beyond these subjects, as many of our prior
audiences either know this material, or find it less exciting.

• But this is the foundation for the machine learning that immediately follows. We would
be remiss to give this short shrift.

• This content is also the least challenging computationally. If this was our final
destination, we might just do this with Jupyter notebooks on laptops.

• But after covering this ground, you and your students can seamlessly tread into the
leading edge, using supercomputers and GPUs to attack interesting problems in big data
and AI, adding stand-out experience to their resumes and applications.

Prereqs

• Our goal is that each module is stand-alone, and the only formal pre-requisite is a basic
knowledge of Python.

• There is a logical ordering, and eventually using these in series could comprise an entire
course.

• We are intentionally avoiding the Linux command line almost entirely. We do not want
this to be an implicit pre-requisite, nor do we have time for detours in our modules.

• However, this is a very useful topic, and it could become a mini-module if there is
demand.

Grading, ChatGPT and the future...
• We recognize that AI tools, like ChatGPT are both a boon and a hindrance for an educator.

• But, they are the current reality, and only likely to become more so.

• We have embraced this reality in two substantial ways:

• We acknowledge that using these tools to write code is becoming an accepted
practice. One immediate effect is that exhaustive coverage of all of the commands or
routines in any given software toolkit is no longer an efficient way to teach a subject.
We instead present a survey with the expectation that the student can find a particular
command at the time of need.

• We have attempted to develop our assignments in such a way that they are not trivial
to solve with chatbots. Details as we get there. However, this is undoubtably an
ongoing challenge.

And now...
Data Science Modules 1 & 2

The
landscape

your
students

are
facing.

Data Science Today

• Basic Data
• Pandas

• "Serious" Data Science
• SQL

• Big Data
• Spark

Machine Learning / AI

Pandas

• Pandas has become the standard Python way to input, manipulate and write basic data.

• It also integrates well with other tools, like visualizing with Matplotlib.

• It has limitations, which is why SQL and big data techniques are essential for many tasks,
but for quick-and-dirty, or limited applications it is very efficient.

• In many Python environments, it is there by default. If not, it is easy to add. In this
course, if you start a python shell, it will be there.

Our First Dataset

We will begin our exploration of Pandas using a well
known dataset drawn from the infamous Titanic
disaster.

It has a variety of data on each of 891 passengers.

Amongst the typical demographic data is included their survival. It enables an interesting,
if somewhat morbid, analysis to determine the foremost factors in survival. Women and
children first? Or, save the rich?

import pandas as pd

titanic = pd.read_csv("titanic.csv")

Getting Started with Pandas

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
..
883 884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
884 885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

[577 rows x 12 columns]

titanic

This "pd" is very standard

Smart, understands "csv"

Survived Survival (0 = No; 1 = Yes)

Pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

Name Name

Sex

Age

SibSp Number of Siblings/Spouses Aboard

Parch Number of Parents/Children Aboard

Ticket Ticket Number

Fare Fare (British pound)

Cabin Cabin number

Embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

titanic["Name"]

DataFrame Queries

0 Braund, Mr. Owen Harris
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
 ...
886 Montvila, Rev. Juozas
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

titanic[["Age","Sex"]]

DataFrame Queries

Age Sex
0 22.0 male
1 38.0 female
2 26.0 female
3 35.0 female
4 35.0 male
..
886 27.0 male
887 19.0 female
888 NaN female
889 26.0 male
890 32.0 male

titanic[titanic["Age"]>30]

DataFrame Conditional Queries

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
11 12 1 1 Bonnell, Miss. Elizabeth female 58.0 0 0 113783 26.5500 C103 S
..
873 874 0 3 Vander Cruyssen, Mr. Victor male 47.0 0 0 345765 9.0000 NaN S
879 880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 1 11767 83.1583 C50 C
881 882 0 3 Markun, Mr. Johann male 33.0 0 0 349257 7.8958 NaN S
885 886 0 3 Rice, Mrs. William (Margaret Norton) female 39.0 0 5 382652 29.1250 NaN Q
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

DataFrame Sorting

titanic.sort_values(by="Age")[["Name","Age"]]

Name Age
803 Thomas, Master. Assad Alexander 0.42
755 Hamalainen, Master. Viljo 0.67
644 Baclini, Miss. Eugenie 0.75
469 Baclini, Miss. Helene Barbara 0.75
78 Caldwell, Master. Alden Gates 0.83
..
859 Razi, Mr. Raihed NaN
863 Sage, Miss. Dorothy Edith "Dolly" NaN
868 van Melkebeke, Mr. Philemon NaN
878 Laleff, Mr. Kristo NaN
888 Johnston, Miss. Catherine Helen "Carrie" NaN

titanic.sort_values(by="Age")[["Name","Age"]][0:10]

Name Age
803 Thomas, Master. Assad Alexander 0.42
755 Hamalainen, Master. Viljo 0.67
644 Baclini, Miss. Eugenie 0.75
469 Baclini, Miss. Helene Barbara 0.75
78 Caldwell, Master. Alden Gates 0.83
..
859 Razi, Mr. Raihed NaN
863 Sage, Miss. Dorothy Edith "Dolly" NaN
868 van Melkebeke, Mr. Philemon NaN
878 Laleff, Mr. Kristo NaN
888 Johnston, Miss. Catherine Helen "Carrie" NaN

import matplotlib.pyplot as plt

titanic["Age"].hist(bins=30)

plt.show()

If you like pictures (matplotlib)

This assumes you have an
X server running on your laptop.

Which we do.

First Assignment:
Find a survival factor

Assignment: Can we find a significant survival variable?

Can you find a significant factor in the data which could be used to predict

survival rates?

I will suggest you focus on one variable at a time.

Note that there are many possible answers. Going from a simple hypothesis

("Maybe people from Cherbourg are unlucky?") to a more complex formula

incorporating multiple variables - with the goal of a more accurate prediction

- is the path of data analysis. This is our first step on that journey.

Connect to adaptpa.psc.edu, and start "python".

Find a meaningful factor and send me your full analysis (maybe just a few lines) and results.

Email to whatever@wherever.edu

This is due by January 1st, 2045.

Titanic

Assignment

Review

import pandas as pd
titanic = pd.read_csv("titanic.csv")

Getting Started with Titanic

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
..
883 884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
884 885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

[577 rows x 12 columns]

males.shape

(577, 12)

males[males["Survived"]==1].shape
(109, 12)

109/577

0.18890814558058924

19% Survival Rate for Males

males = titanic[titanic["Sex"]=="male"]

titanic[titanic["Sex"]=="female"].shape

How did the women fare?

(314, 12)

titanic[(titanic["Sex"]=="female") & (titanic["Survived"]==1)].shape

(233, 12)

233/314

0.7420382165605095

74% Survival Rate for Females

Hypothesis confirmed: chivalry not dead.

But Jack Dawson is.

men = titanic[(titanic["Sex"]=="male") & (titanic["Age"]>15)]

Women and children first!?

men.shape

(413, 12)

men[men["Survived"]==1].shape

(72, 12)

72/413

0.17433414043583534233/314

17% Survival Rate for Men

women_and_children = titanic[(titanic["Sex"]=="female") | (titanic["Age"]<16)]
women_and_children.shape

(354, 12)

#Seems like some people are missing...

NaNs are everywhere!

titanic[titanic["Age"].isna()]

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
17 18 1 2 Williams, Mr. Charles Eugene male NaN 0 0 244373 13.0000 NaN S
19 20 1 3 Masselmani, Mrs. Fatima female NaN 0 0 2649 7.2250 NaN C
26 27 0 3 Emir, Mr. Farred Chehab male NaN 0 0 2631 7.2250 NaN C
28 29 1 3 O'Dwyer, Miss. Ellen "Nellie" female NaN 0 0 330959 7.8792 NaN Q
..
859 860 0 3 Razi, Mr. Raihed male NaN 0 0 2629 7.2292 NaN C
863 864 0 3 Sage, Miss. Dorothy Edith "Dolly" female NaN 8 2 CA. 2343 69.5500 NaN S
868 869 0 3 van Melkebeke, Mr. Philemon male NaN 0 0 345777 9.5000 NaN S
878 879 0 3 Laleff, Mr. Kristo male NaN 0 0 349217 7.8958 NaN S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S

[177 rows x 12 columns]

413+354+177

944

This is bigger than the total passenger list (891).
But makes sense as we have double counted some
females with Age=NaN in our logic.

women_and_children[women_and_children["Survived"]==1].shape

(254, 12)

Women and children first!

254/354

0.7175141242937854

72% Survival Rate for
Women & Children

Another obvious question we might ask is how did the wealthier, 1st class,
passengers do versus the underclasses?

We could continue with our basic tools and separate out the various
passenger classes, and perform some math to get at an answer.

However, we are now starting to ask questions that can utilize more
sophisticated tools like:

How did Thurston Howell III make out?

o Joins (called Merges in Pandas)
o Grouping
o Pivot tables

Pandas has these capabilities. However, more complex data manipulation like this can often
benefit from the more powerful capabilities of a Structured Query Language (SQL) database.
Certainly at scale.

So we will preview the power of these operations with one last look at this problem, and
then we will move on to SQL.

After you have learned SQL, you will easily be able to employ these operations in Pandas
when you wish.

Grouping typically performs 3 steps:

o Splits the data into groups base on some criteria: Pclass
o Applies a function to each group separately: Survival Rate
o Combine the results into a new table

That is one way to get directly at our answer. It becomes this simple:

Grouping

titanic[['Pclass', 'Survived']].groupby('Pclass').mean()

Pclass Survived
1 0.629630
2 0.472826
3 0.242363

That is a pretty brutal curve.
I believe it speaks for itself.

SQL

Big Data

Big data is a broad term for data sets so large or complex that traditional
data processing applications are inadequate.

 —Wikipedia

Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….

Less sophisticated is sometimes better…

Get all articles from 2007.

Get all papers on “fault tolerance”
 – grumble and cough

“Chronologically” or “geologically” organized.
Familiar to some of you at tax time.

Indexing will determine your individual performance.
Teamwork can scale that up.

The culmination of centuries...

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author – grumble… Your only hope…

Then data started to grow.

1956 IBM Model 350

5 MB of data!

But still pricey. $

Better think about what
you want to save.

And finally got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate. The original reference actually mentions a more accurate 208TB, and in
2013 the digital collection alone was 3PB.

Whys:
 Storage got cheap
 So why not keep it all?
 Today data is a hot commodity $
 And we got better at generating it
 Facebook
 Deep Learning
 IoT
 Science...

Pan-STARRS

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum:

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy

documents
Wikipedia

Commons

Environmental sensors:

Water temperature

profiles from tagged

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html

A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)

• Only about 2.5TB per year, but...
• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with

increases in volume in order to ensure that translation always finishes within the 15 minute window…. and prioritizes the highest quality material,
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”

3 V's of Big Data
• Volume
• Velocity
• Variety

Why it wasn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for agile development

"What do you mean we didn't plan to keep logs of
everyone's heartbeat?"

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a transaction is costly.

Good Ol’ SQL couldn't keep up.
Oracle

SELECT NAME, NUMBER, FROM PHONEBOOK Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address

• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

So we gave up: Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723

Sure, giving up ACID buys us a lot performance, but doesn't our crude organization
cost us something? Yes, but remember these guys?

How does a pile of unorganized data solve our
problems?

This is what they
look like today.

• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
 XML

12 XML
 XML

<CATALOG>

 <PLANT>

 <COMMON>Bloodroot</COMMON>

 <BOTANICAL>Sanguinaria canadensis</BOTANICAL>

 <ZONE>4</ZONE>

 <LIGHT>Mostly Shady</LIGHT>

 <PRICE>$2.44</PRICE>

 <AVAILABILITY>031599</AVAILABILITY>

 </PLANT>

 <PLANT>

 <COMMON>Columbine</COMMON>

 <BOTANICAL>Aquilegia canadensis</BOTANICAL>

 <ZONE>3</ZONE>

 <LIGHT>Mostly Shady</LIGHT>

 <PRICE>$9.37</PRICE>

 <AVAILABILITY>030699</AVAILABILITY>

 </PLANT>

.

.

• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value
store itself

• Different databases
 aggregate data differently
 on disk with different
 optimizations

Wide Column Stores
Google BigTable

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847

• Great for semantic web

• Great for graphs

Graph
 Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated

SPARQL (W3C Standard)

• Uses Resource Description Framework format
• triple store

• RDF Limitations
• No named graphs
• No quantifiers or general statements

• “Every page was created by some author”
• “Cats meow”

• Requires a schema or ontology (RDFS) to define rules
• "The object of ‘homepage’ must be a

Document.“
• "Link from an actor to a movie must

connect an object of type Person to an
object of type Movie."

SELECT ?name ?email

WHERE {

 ?person a foaf:Person.

 ?person foaf:name ?name.

 ?person foaf:mbox ?email. }

Queries
SPARQL, Cypher

Cypher (Neo4J only)

• No longer proprietary
• Stores whole graph, not just triples
• Allows for named graphs
• …and general Property Graphs (edges
 and nodes may have values)

SMATCH (Jack:Person

 { name:‘Jack Nicolson’})-[:ACTED_IN]-(movie:Movie)

RETURN movie

Graph Databases

• These are not curiosities, but are behind some of the most high-profile pieces of Web
infrastructure.

• They are definitely big data.

Microsoft Bing Knowledge Graph Search and conversations. ~2 billion primary entries
~55 billion facts

Facebook ~50 million primary entries
~500 million assertions

Google Knowledge Graph Search and conversations. ~1 billion entries
~55 billion facts

LinkedIn graph 590 million members
30 million companies

Noy, Goa, Jain. Communications of the ACM, August 2019

What kind
of databases

are they?

Hadoop & Spark

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark evolves that in several
directions that we will get in to. Both can accommodate multiple types of databases and
achieve their performance gains by using parallel workers.

Frameworks for Data

The mother of Hadoop was necessity. It is
trendy to ridicule its primitive design, but
it was the first step.

We have repurposed many of these
blocks to build a better framework.

SQL
DataFrame

Spark

Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using Hadoop as
the backing store is a
common and sensible
option.

Same Idea (improved)

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient Distributed Dataset

Spark Formula

1. Create/Load RDD
 Webpage visitor IP address log

2. Transform RDD
 ”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
 Wait until data is actually needed
 Maybe apply more transforms (“Distinct IPs")

4. Perform Actions that return data
 Count “How many unique U.S. visitors?”

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our
pyspark shell provides us with a convenient sc, using the local filesystem, to start. Your standalone programs
will have to specify one:

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
47

>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/61-c/Hubble.gif‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine.
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the
digression.

Most modern languages have adopted this nicety.

Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func
returns true.

flatMap(func) func can return multiple items, and generate a sequence,
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Same Size

Fewer
Elements

More
Elements

Common Actions

Action Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element. Used for side-effects (updating
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Transformations vs. Actions

Transformations go from one RDD to another1.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and
clever algorithms to minimize communication and parallelize the processing. You want to
keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled
down (collect), or along the way to "peek" at the process (count, take).

1 Yes, some of them also create an RDD (parallelize), but you get the idea.

Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs. They are
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an
RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you
can use the key/value operations that follow.

Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis. That is,
combine values with the same key.

groupByKey() Combine values with same key. Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.

Pair RDD Actions

Action Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

As with transformations, all of the regular actions are available to Pair RDDs, and there
are some additional ones that can take advantage of key/value structure.

Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with
matching keys in self and other. Each pair of elements will be
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k,
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v,
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w))
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.

>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice", "$2000"), ("Bob", "$1200")])

Joins Are Quite Useful

Any database designer can tell you how common joins are. Let's look at a simple
example. We have (here we create it) an RDD of our top purchasing customers.

And an RDD with all of our customers' addresses.

>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 State St."), ("Frank", "555 Timer Lane"), ("Sally", "44
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 West Oak")])

To create a mailing list of special coupons for those favored customers we can use a
join on the two datasets.

>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)

>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 West Oak')), ('Joe', ('$103', '23 State St.')), ('Alice', ('$2000', '3 Elm Road'))]

If you are coming from a Pandas DataFrame
background, joins are congruent with the
Merge functions. If you've used them, you may
have noticed that they can take some time with
even small datasets. They do not scale well.

Shakespeare, a Data Analytics Favorite
Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), or which word makes Macbeth so
creepy ("the", yes) it is amazing how much publishable research has sprung from the recent analysis of 400 year old
text.

We’re going to do some exercises here using a text file containing all of his works.

Some Simple Problems
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser
window.

If you are starting from scratch on the login node:
1) interact 2) cd BigData/Shakespeare 3) module load spark 4) pyspark
...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is
to think “key/value”. If you go that way, think about which
data should be the key and don’t be afraid to swap it
about with value. This is a very common manipulation
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python
unsorted dictionary of results:

... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1,
'poet.': 2, 'Toad!': 1, 'leaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell':
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, 'leas': 2, 'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG

data, we want to remain as an RDD until we reach our final results. So, no.

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>>
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>>
>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)
[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>>

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.

for loops, collect in middle of analysis, large data structures

...

intermediate_results = data_rdd.collect()

python_data = []

for datapoint in intermediate_results:
 python_data.append(modify_datapoint(datapoint))

next_rdd = sc.parallelize(python_data)

...

Spark Anti-Patterns

Here are a couple code clues that you are not working with Spark, but probably against it.

Ask yourself, "would this work with billions of elements?". And likely anything you are doing with a for is something
that Spark will gladly parallelize for you, if you let it.

Some Homework Problems

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map(lambda x: stemmer.stem(x))

Who needs this Spark stuff?
As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.

* See Panda's creator Wes McKinney's "10 Things I Hate About Pandas" at
 https://wesmckinney.com/blog/apache-arrow-pandas-internals/

Optimizations
We said one of the advantages of Spark is that we can control things for better
performance. There are a multitude of optimization, performance, tuning and
programmatic features to enable better control. We quickly look at a few of the most
important.

• Persistence

• Partitioning

• Parallel Programming Capabilities

• Performance and Debugging Tools

Persistence
• Lazy evaluation implies by default that all the RDD dependencies will be computed when we call an action on that

RDD.

• If we intend to use that data multiple times (say we are filtering some log, then dumping the results, but we will
analyze it further) we can tell Spark to persist the data.

• We can specify different levels of persistence: MEMORY_ONLY, MEMORY_ONLY_SER, MEMORY_AND_DISK,
MEMORY_AND_DISK_SER, DISK_ONLY

>>> lines_rdd = sc.textFile("nasa_19950801.tsv")
>>> stanfordLines_rdd = lines.filter(lambda line: "stanford" in line)
>>> stanfordLines_rdd.persist(StorageLevel.MEMORY_AND_DISK)
>>> stanfordLines_rdd.count()
47

>>> stanfordLines_rdd.first(1)
['glim.stanford.edu\t-\t807258394\tGET\t/shuttle/…/orbiters-logo.gif\t200\t1932\t\t']
.
.
.
>>> stanfordLines.unpersist()

Do before

first action.

Actions

Otherwise will just

get evicted when

out of memory

(which is fine).

Partitions
• Spark distributes the data of your RDDs across its resources. It tries to do some

obvious things.

• With key/value pairs we can help keep that data grouped efficiently.

• We can create custom partitioners that beat the default (which is probably a hash or
maybe range).

• Use persist() if you have partitioned your data in some smart way. Otherwise it will
keep getting re-partitioned.

Parallel Programming Features
Spark has several parallel programming features that make it easier and more efficient to do operations in parallel in a more explicit way.

Accumulators are variables that allow many copies of a variable to exist on the separate worker nodes.

It is also possible to have replicated data that we would like all the workers to have access to. Perhaps a lookup table of IP addresses to
country codes so that each worker can transform or filter on such information. Maybe we want to exclude all non-US IP entries in our logs.
You might think of ways you could do this just by passing variables, but they would likely be expensive in actual operation (usually requiring
multiple sends). The solution in Spark is to send an (immutable, read only) broadcast variable

Accumulators

log = sc.textFile(“logs”)
blanks = sc.accumlator(0)

def tokenizeLog(line)
 global blanks # write-only variable
 if (line ==“”)
 blanks += 1
 return line.split(“ “)

entries = log.flatMap(tokenizeLog)
entries.saveAsTextFile(“parsedlogs.txt”)
print “Blank entries: %d” blanks.value

Broadcast Variables

log = sc.textFile(“log.txt”)

IPtable = sc.broadcast(loadIPTable())

def countryFilter(IPentry, IPtable)
 return (IPentry.prefix() in IPTable)
USentries = log.filter(countryFilter)

Performance & Debugging

We will give unfortunately short shrift to performance and debugging, which are both
important. Mostly, this is because they are very configuration and application
dependent.

Here are a few things to at least be aware of:

• SparkConf() class. A lot of options can be tweaked here.

• Spark Web UI. A very friendly way to explore all of these issues.

IO Formats
Spark has an impressive, and growing, list of input/output formats it supports. Some important
ones:

• Text
• CSV
• SQL type Query/Load

• JSON (can infer schema)
• Parquet
• Hive
• XML
• Sequence (Hadoopy key/value)
• Databases: JDBC, Cassandra, HBase, MongoDB, etc.

• Compression (gzip…)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...

Spark Streaming

Spark addresses the need for streaming processing of data with a API that divides the
data into batches, which are then processed as RDDs.

There are features to enable:

• Fast recovery from failures or timeouts
• Load balancing
• Integration with static data and interactive queries
• Integration with other components (SQL, Machine Learning)

15% of the "global datasphere"
(quantification of the amount of data
created, captured, and replicated across
the world) is currently real-time. That
number is growing quickly both in
absolute terms and as a percentage.

A Few Words About DataFrames

As mentioned earlier, an appreciation for having some defined structure to your data has come back
into vogue. For one, because it simply makes sense and naturally emerges in many applications. Often
even more importantly, it can greatly aid optimization, especially with the Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame based. This is
simply SQL type columns. Very similar to Python pandas DataFrames (but based on RDDs, so not
exactly).

We haven't prioritized them here because they aren't necessary, and require a little more code to line
up the types properly. But some of the latest features use them.

And while they would just complicate our basic examples, they are often simpler for real research
problems. So don't shy away from using them.

Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
 ("Jose","Elm Pl.","ND",45698)])
>>>
>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name| street|state| zip|
+-----+--------+-----+-----+
| Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+-----+-----+

Creating DataFrames

You will come across DataFrames created without a schema. They get default column names.

>>> noSchemaDataFrame = spark.createDataFrame(row_rdd)
>>> noSchemaDataFrame.show()
+-----+--------+---+-----+
| _1| _2| _3| _4|
+-----+--------+---+-----+
| Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+---+-----+

And you can create them inline as well.

>>> directDataFrame = spark.createDataFrame([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
 ("Jose","Elm Pl.","ND",45698)],
 ["name", "street", "state", "zip"])

Datasets
Spark has added a variation (technically a superset)
of DataFrames called Datasets. For compiled
languages with strong typing (Java and Scala) these
provide static typing and can detect some errors at
compile time.

This is not relevant to Python or R.

Just Spark DataFrames making life easier...

Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json

{"RecordNumber":1,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US",
{"RecordNumber":2,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PASEO COSTA DEL SUR","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US","LocationT
{"RecordNumber":10,"Zipcode":709,"ZipCodeType":"STANDARD","City":"BDA SAN LUIS","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":18.14,"Long":-66.26,"Xaxis":0.38,"Yaxis":-0.86,"Zaxis":0.31,"WorldRegion":"NA","Country":"US","Location

>>> df = spark.read.json("zipcodes.json")
>>> df.printSchema()
root
 |-- City: string (nullable = true)
 |-- Country: string (nullable = true)
 |-- Decommisioned: boolean (nullable = true)
 |-- EstimatedPopulation: long (nullable = true)
 |-- Lat: double (nullable = true)
 |-- Location: string (nullable = true)
 |-- LocationText: string (nullable = true)
 |-- LocationType: string (nullable = true)
 |-- Long: double (nullable = true)
 |-- Notes: string (nullable = true)
 |-- RecordNumber: long (nullable = true)
 |-- State: string (nullable = true)
 |-- TaxReturnsFiled: long (nullable = true)
 |-- TotalWages: long (nullable = true)
 |-- WorldRegion: string (nullable = true)
 |-- Xaxis: double (nullable = true)
 |-- Yaxis: double (nullable = true)
 |-- Zaxis: double (nullable = true)
 |-- ZipCodeType: string (nullable = true)
 |-- Zipcode: long (nullable = true)

>>> df.show()
+-------------------+-------+-------------+-------------------+-----+--------------------
| City|Country|Decommisioned|EstimatedPopulation| Lat| Location
+-------------------+-------+-------------+-------------------+-----+--------------------
| PARC PARQUE| US| false| null|17.96|NA-US-PR-PARC PARQUE
|PASEO COSTA DEL SUR| US| false| null|17.96|NA-US-PR-PASEO CO...
| BDA SAN LUIS| US| false| null|18.14|NA-US-PR-BDA SAN ...
| CINGULAR WIRELESS| US| false| null|32.72|NA-US-TX-CINGULAR...
| FORT WORTH| US| false| 4053|32.75| NA-US-TX-FORT WORTH
| FT WORTH| US| false| 4053|32.75| NA-US-TX-FT WORTH
| URB EUGENE RICE| US| false| null|17.96|NA-US-PR-URB EUGE...
| MESA| US| false| 26883|33.37| NA-US-AZ-MESA
| MESA| US| false| 25446|33.38| NA-US-AZ-MESA
| HILLIARD| US| false| 7443|30.69| NA-US-FL-HILLIARD
| HOLDER| US| false| null|28.96| NA-US-FL-HOLDER
| HOLT| US| false| 2190|30.72| NA-US-FL-HOLT
| HOMOSASSA| US| false| null|28.78| NA-US-FL-HOMOSASSA
| BDA SAN LUIS| US| false| null|18.14|NA-US-PR-BDA SAN ...
| SECT LANAUSSE| US| false| null|17.96|NA-US-PR-SECT LAN...
| SPRING GARDEN| US| false| null|33.97|NA-US-AL-SPRING G...
| SPRINGVILLE| US| false| 7845|33.77|NA-US-AL-SPRINGVILLE
| SPRUCE PINE| US| false| 1209|34.37|NA-US-AL-SPRUCE PINE
| ASH HILL| US| false| 1666| 36.4| NA-US-NC-ASH HILL
| ASHEBORO| US| false| 15228|35.71| NA-US-NC-ASHEBORO
+-------------------+-------+-------------+-------------------+-----+--------------------

And Sometime DataFrames Are Limiting

DataFrames are not as flexible as plain RDDs, and it isn't uncommon to find yourself fighting to do something that
would be simple with a map, for example. In that case, don't hesitate to flip back into a plain RDD.

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
 ("Jose","Elm Pl.","ND",45698)])

>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])

>>> another_row_rdd = aDataFrameFromRDD.rdd

Notice that this is not even a method, it is just a property. This is a clue that behind the scenes we are always working
with RDDs.

A minor technicality here is that the returned object is actually a "Row" type. You may not care. If you want it be the
original tuple type then

>>> tuple_rdd = aDataFrameFromRDD.rdd.map(tuple)

Note that when our map function is a function that already exists, there is no need for a lambda.

Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

• every RDD could be many TB in size

• every transform could use many thousands of cores and TB of memory

• every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You
are learning how to cope with Big Data.

Other Scalable Alternatives: Dask

Of the many alternatives to play with data on
your laptop, there are only a few that aspire to
scale up to big data. The only one, besides Spark,
that seems to have any traction is Dask.

Numpy like operations

import dask.array as da
a = da.random.random(size=(10000, 10000),
 chunks=(1000, 1000))
a + a.T - a.mean(axis=0)

Dataframes implement Pandas

import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*.csv')
df.groupby(df.account_id).balance.sum()

Pieces of Scikit-Learn

from dask_ml.linear_model import \
LogisticRegression
lr = LogisticRegression()
lr.fit(train, test)

It attempts to retain more of the "laptop feel" of
your toy codes, making for an easier port. The
tradeoff is that the scalability is a lot more
mysterious. If it doesn't work - or someone hasn't
scaled the piece you need - your options are
limited.

At this time, I'd say it is riskier, but academic
projects can often entertain more risk than industry.

Drill Down?

[urbanic@r001 ~]$ pyspark
Python 3.7.4 (default, Aug 13 2019, 20:35:49)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 3.0.0-preview2
 /_/

Using Python version 3.7.4 (default, Aug 13 2019 20:35:49)
SparkSession available as 'spark'
In [1]: exec(open("./clustering.py").read())
1 5.76807041184e+14
2 3.73234816206e+14
3 2.13508993715e+14
4 1.38250712993e+14
5 1.2632806251e+14
6 7.97690150116e+13
7 7.14156965883e+13
8 5.7815194802e+13
...
...
...

Run My Programs Or Yours
exec()

If you have another session window open on
bridge’s login node, you can edit this file, save it
while you remain in the editor, and then run it again
in the python shell window with exec(...).

You do not need this second session to be on a
compute node. Do not start another interactive
session.

Machine Learning

Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools. The MLlib library
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above
implementations.

There are good example documents for the clustering routine we are using, as well as alternative
clustering algorithms, here:

http://spark.apache.org/docs/latest/mllib-clustering.html

I suggest you use these pages for your Spark work.

http://spark.apache.org/docs/latest/mllib-clustering.html

Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine
learning objectives, sometimes as one part of a pipeline.

Weight

S
iz

e

Coin Sorting

Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let’s fire up
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t.
How hard can it be to count clusters? How many are here?

From 1900 until 1956 humans were
considered to have 48 chromosomes,
instead of 46, based upon the interpretation
of this camera lucida image.

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>

Finding Clusters

Read into RDD

Transform to words and integers

br06% interact
...
r288%
r288% module load spark
r288% pyspark

Make sure you are in the directory with the data file. Otherwise,
Spark is dangerously quiet when you textFile() a file that does not
exist. It is "lazy" and you won't find out that you have missing
data until a later error.

>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[' 664159 550946', ' 665845 557965', ' 597173 575538', ' 618600 551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[['664159', '550946'], ['665845', '557965'], ['597173', '575538'], ['618600', '551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform

Import Kmeans

Finding Clusters

What is the
exact answer?

There are helper algorithms (the
python kneed package) or
alternative metrics, such as the
silhouette coefficient, that you
might consider. None are
definitive. Judgement and
domain knowledge are critical.

____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.0
 /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
... model = KMeans.train(rdd3, clusters)
... print (clusters, model.computeCost(rdd3))
...

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14
2 3.43183673951e+14
3 2.23097486536e+14
4 1.64792608443e+14
5 1.19410028576e+14
6 7.97690150116e+13
7 7.16451594344e+13
8 4.81469246295e+13
9 4.23762700793e+13
10 3.65230706654e+13
11 3.16991867996e+13
12 2.94369408304e+13
13 2.04031903147e+13
14 1.37018893034e+13
15 8.91761561687e+12
16 1.31833652006e+13
17 1.39010717893e+13
18 8.22806178508e+12
19 8.22513516563e+12
20 7.79359299283e+12
21 7.79615059172e+12
22 7.70001662709e+12
23 7.24231610447e+12
24 7.21990743993e+12
25 7.09395133944e+12
26 6.92577789424e+12
27 6.53939015776e+12
28 6.57782690833e+12
29 6.37192522244e+12

>>> for trials in range(10):
... print
... for clusters in range(12,18):
... model = KMeans.train(rdd3,clusters)
... print (clusters, model.computeCost(rdd3))

Right Answer?

12 2.45472346524e+13
13 2.00175423869e+13
14 1.90313863726e+13
15 1.52746006962e+13
16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13
13 2.90031673822e+13
14 1.52308079405e+13
15 8.91765957989e+12
16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13
14 2.11070395905e+13
15 1.47792736325e+13
16 1.85736955725e+13
17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13
14 1.45400177021e+13
15 1.52115329071e+13
16 1.41347332901e+13
17 1.31314086577e+13

12 2.47927778784e+13
13 2.43404436887e+13
14 2.1522702068e+13
15 8.91765000665e+12
16 1.4580927737e+13
17 8.57823507015e+12

12 2.31466520037e+13
13 1.91856542103e+13
14 1.49332023312e+13
15 1.3506302755e+13
16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13
13 1.83498739266e+13
14 1.96076943156e+13
15 1.41725666214e+13
16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13
14 1.91732620477e+13
15 8.91769396968e+12
16 8.64876051004e+12
17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13
14 1.95213876047e+13
15 1.93000628589e+13
16 2.07670831868e+13
17 8.47797102908e+12

12 2.39830397362e+13
13 2.00248378195e+13
14 1.34867337672e+13
15 2.09299321238e+13
16 1.32266735736e+13
17 8.50857884943e+12

>>> for trials in range(10): #Try ten times to find best result
... for clusters in range(12, 16): #Only look in interesting range
... model = KMeans.train(rdd3, clusters)
... cost = model.computeCost(rdd3)
... centers = model.clusterCenters #Let’s grab cluster centers
... if cost<1e+13: #If result is good, print it out
... print (clusters, cost)
... for coords in centers:
... print (int(coords[0]), int(coords[1]))
... break
...

Find the Centers

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521

Fit?

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

16 Clusters

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

We are closer to leading edge science than you might think.

The LIGO gravitational wave detector was able to confirm the collision of two neutron stars
with both a gamma ray satellite and optical and other electromagnetic spectrum telescopes.
For these transient events, it requires rapid real-time signal analysis to steer other
instruments to the proper celestial coordinates. The 2 second gamma-ray burst was
detected 1.7 seconds after the GW merger signal. 70 observatories were able to mine
signatures in the following days. Even so, the refined location alert took a long time, and
much improvement lies ahead.

This rapid processing requirement will only become more extreme as

the Square Kilometer Array comes fully on-line. It will generate over

an Exabyte of data a day. It will require extreme real-time

processing to classify and compress this data down to an archivable

size.

Strange, repeating radio signal near the

center of the Milky Way has scientists

stumped

This article (www.livescience.com/strange-

radio-source-milky-way-center) is the

summary of the paper

(arxiv.org/pdf/2109.00652.pdf) that looks an

awful lot like what we are doing.

In April 2020, astronomers picked up some bursts
of activity, in the X-ray band of the spectrum, a
“run-of-the-mill” magnetar. But the team found
that, shortly after the magnetar burst in the X-ray
band, CHIME picked up two sharp staccato peaks
in the radio band, within several milliseconds of
each other, signaling a fast radio burst. The
researchers were able to track the radio bursts to
a point in the sky that was within a fraction of a
degree of SGR 1935+2154 — the same magnetar
that was blasting out X-rays around the same
time. The team used calibration data from other
astrophysical sources to estimate the magnetar’s
brightness. They calculated that the magnetar, in
the fraction of a second that the FRB flashed, was
3,000 times brighter than any other magnetar
radio signal that has yet been observed.
Happening in our own galaxy, thousands of times
brighter than any other pulse we’ve ever seen.

Assignment: Using Spark to mine astro signals

Q: Can you find the repeating cosmological signal (pulsar?) in the captured data?

In ~urbanic/Advanced_Computational_Physics/Spark/pulsar.dat on Bridges you will find the data with a

series of signals stored as:

 ascension (degrees), declination (degrees), time (seconds), frequency (MHz)

These are radiofrequency signals captured by an array of instruments scanning a solid angle of the sky.

The data is, like almost all real data, a little noisy and has sources of errors. In our case the angular

coordinates have 0.1 degrees error, the signal frequency has 0.1 MHZ error and the timebase/period error is

<0.01s (that is one STD or standard deviation).

Your job is to find the most regular temporarily repeating RF source.

Your target will be found in the same location (within error) of the sky, on the same frequency (within error)

chirping for the most blips, regularly spaced in time during that active period. So...

...........blip...blip...blip...blip...blip...blip..

Again, you are looking for the signal with the most blips.

A brief word about errors...

For a normal or gaussian distribution, the standard deviation indicates
the region where about 2/3 of the points will fall. And for small sample
sizes, this may be noisy.

How to approach an algorithmic problem...

Think about how you, without a computer, would attempt a tiny version of the problem. Once
you think about how you would do it, a algorithm often becomes clear. If you can't think
about how you would do it, writing lines of code isn't going to make a solution materialize.

Assignment: Using Spark to mine astro signals

There are multiple approaches to this problem that will work. I can think of several that would be dead painful (hints in lecture). In particular,

clustering is not needed! We happen to be covering this now, and it seems like an intuitively useful tool for this task, but it is not necessary at all, and I

think it is much harder than other simpler methods.

Biggest Hint: I am a nice guy! While the data could have nasty surprises, it does not. Use common sense and experiment around and you will find an

clear answer.

This is doable interactively. You can explore the data within PySpark using operations that are reasonably quick. You do not need to create long running

scripts to get to the answer.

To recap:

1. log on

2. cp the datafile to where you want to work with your pyspark session

3. get an interactive node

4. load the spark module

5. start a pyspark session

6. load the datafile

7. and use transforms to wring out the answer: the coordinates, the frequency and the period (rounded to integers is fine).

Use Spark commands (RDDs) to derive your answer. Yes, with a dataset this size you could use python directly, but a real dataset would be far too large.

Use Spark transforms to boil down your data until you have a modest amount (screenful) of data to inspect. Use python at that point, if you wish, or just

observe your answer. Ask if you don't understand this point. You could lose credit otherwise.

Submit your answer along with the exact sequence of spark commands that got you there. This means a single email. An attachment of the spark

commands with your answer in the body of the mail, and any explanation you care to provide, is the required format.

Dimensionality Reduction

We are going to find a recurring theme throughout machine learning:

• Our data naturally resides in higher dimensions

• Reducing the dimensionality makes the problem more tractable

• And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed
representation.

As we return to this theme, we will highlight these slides with our Dimensionality
Reduction badge so that you can follow this thread and appreciate how fundamental
it is.

Why all these dimensions?

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly
dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.

Category Purchase Total ($)

Children's Clothing $800

Pet Supplies $0

Cameras (Dash, Security, Baby) $450

Containers (Storage) $350

Romance Book $0

Remodeling Books $80

Sporting Goods $25

Children's Toys $378

Power Tools $0

Computers $0

Garden $0

Children's Books $180

... ...

< 2
9

0
0

 C
atego

ries >

This is a 2900 dimensional vector.

Why all these dimensions?

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable
error).

People spending on “child’s toys “ and “children’s clothing” might cluster with “child’s books” and, less
obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are
safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the
clusters at all. We can now represent any customer by their distance from these 80 clusters.

Customer Representation

Cluster Young
Parents

College
Athlete

Auto
Enthusiast

Knitter Steelers Fan Shakespeare
Reader

Sci-Fi Fan Plumber ...

Distance 0.02 2.3 1.4 8.4 2.2 14.9 3.3 0.8 ...

We have now accomplished two things:
• we have compressed our data
• learned something about our customers (who to send a dashcam promo to).

80 dimensional vector.

Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances
between randomly distributed points within differently
dimensioned unit hypercubes. Notice how all the points start
to be about the same distance apart.

Once can imagine this makes life harder on a clustering
algorithm!

There are other surprising effects: random vectors are
almost all orthogonal; the unit sphere takes almost no
volume in the unit square. These cause all kinds of problems
when generalizing algorithms from our lowly 3D world.

Metrics

Even the definition of distance (the metric) can vary based upon application. If you are solving chess problems, you might find the
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b ≥ c).

Alternative DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!

Alternative DR: Principal Component Analysis

Flatter 2D-ish Data Set View down the 1st Princ. Comp.

Why So Many Alternatives?

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available
factors. We may have an entry (vector) for each home that captures this kind of data:

Home Data

Latitude 4833438 north

Longitude 630084 east

Last Sale Price $ 480,000

Last Sale Year 1998

Width 62

Depth 40

Floors 3

Bedrooms 3

Bathrooms 2

Garage 2

Yard Width 84

Yard Depth 60

... ...

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...

Principal Component Analysis Fail

1st Component Off
Data Not Very Linear

D x W Is Not Linear
But (DxW) Fits Well

Non-Linear PCA?
A Better Approach Tomorrow!

Why the fascination with linear techniques?

The Streetlight Effect

This is a very real and powerful force
throughout the sciences.

It is not because practitioners are dumb.

But, it is also very often neither explained
nor justified.

Which leads to great confusion.

Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images

Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional

Manifold

3

6

4

0

8

9

7

2

1

Maybe Very Contiguous

Maybe A Small Set
Of Disconnected

9

5

7

3

4

Images from Wikipedia

import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
 plt.figure()
 plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
 plt.xticks([]); plt.yticks([])
 plt.title(title)
 for i in range(X.shape[0]):
 plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.))

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Sparse Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA (Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)
draw(X_tsne, "t-SNE Embedding")

plt.show()

Testing These Ideas With Scikit-learn
Sparse

How does all this fit together?

AI
ML

DL
nee Neural Nets

Big

 Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL
Angsty Poetry

Paintings of
Monkeys Piloting Jets

The
Journey
Ahead

Clustering
Assignment

Review

Our particular problem.

In this case, I might plot the points out on
graph paper and see if any pattern emerges.

If this seems like a reasonable approach, I
could think about how to implement this in
Spark.

Spark will buy us scalability.

And if we do this with RDDs, we will naturally
obtain scalability. Our helpers can all work on
a small portion of the overall problem.

Just read stuff in and round off
raw = sc.textFile('pulsar.dat')
tokens = raw.map(lambda x: x.split())
floats = tokens.map(lambda x: (float(x[0]),float(x[1]),float(x[2]),float(x[3])))
rounded = floats.map(lambda x: (round(x[0]),round(x[1]),round(x[2]),round(x[3])))

rounded.take(5)
[(94, 108, 1766, 6310),
 (68, 93, 2370, 5114),
 (80, 101, 1324, 5299),
 (86, 91, 1386, 4572),
 (95, 77, 2000, 2841)]

keyed = rounded.map(lambda x: (tuple([x[0],x[1]]), [[x[2],x[3]]]))

keyed.take(3)
[((94, 108), [[1766, 6310]]),
 ((68, 93), [[2370, 5114]]),
 ((80, 101), [[1324, 5299]])]

reduced = keyed.reduceByKey(lambda x,y: x+y)

reduced.take(2)
[((94, 108), [[1766, 6310], [1768, 6310]]),
 ((68, 93), [[2370, 5114], [2367, 5113], [594, 3576], [3074, 1572]])]

repeats = reduced.map(lambda x: (x[0],len(x[1])))
repeats.take(4)
Out[14]: [((94, 108), 2), ((68, 93), 4), ((80, 101), 4), ((86, 91), 3)]

First Approach: Sort Coordinates Into Bins

groupByKey() functions similarly
here. It leaves you with a Spark
Iterable type, which is fine but
requires some further processing
to see the result.

sorted = repeats.takeOrdered(30, key = lambda x: -x[1])

sorted
[((73, 100), 14),
 ((108, 101), 13),
 ((101, 105), 12),
 ((63, 107), 11),
 ((63, 114), 11),
 ((84, 107), 10),
 ((75, 87), 10),
 ((116, 119), 10),
 ((108, 119), 10),
 ((72, 100), 10)]

First Approach: Sort Coordinates Into Bins (contd.)

Insight: there are 14 points in at
least this coordinate patch. But,
they could be from different
sources. Better look at all the
data.

sorted_with_data = reduced.takeOrdered(4, key = lambda x: -len(x[1]))
sorted_with_data
[((73, 100),
 [[2471, 6973],
 [2590, 3717],
 [2442, 6973],
 [2446, 6973],
 [2140, 6112],
 [2487, 6973],
 [2512, 6973],
 [2483, 6972],
 [2458, 6972],
 [2479, 6973],
 [1455, 5587],
 [1463, 5587],
 [2499, 6972],
 [2462, 6972]]),
 ((108, 101),
 [[1065, 1174],
 [1896, 1706],
 [1934, 1706],
 [1904, 1706],
 [1973, 1706],
 [1942, 1706],
 [1950, 1706],
 [1911, 1706],
 [1980, 1706],
 [1073, 1174],
 [1919, 1706],
 [1965, 1706],
 [1927, 1706]]),

First Approach: Sort Coordinates Into Bins (contd.)

Insight: 73,100 has 10 signals
around 6973 MHz and 108,101
has 11 of 1706 MHz.

We should check neighboring
bins for both to see if there are
associated points there.

Or, maybe we can look for the
suspect frequencies and see
where they are.

((101, 105),
 [[40, 3284],
 [2841, 1419],
 [2839, 1419],
 [2752, 7860],
 [2651, 5529],
 [1604, 5641],
 [2901, 6707],
 [2748, 7860],
 [631, 3779],
 [2648, 5529],
 [1596, 5641],
 [634, 3779]]),
 ((63, 107),
 [[1614, 1258],
 [930, 2720],
 [1615, 1259],
 [1617, 1259],
 [2173, 4264],
 [1305, 4608],
 [1618, 1259],
 [2164, 4264],
 [1313, 4608],
 [971, 6670],
 [935, 2720]])]

Use same RDD's as prior approach to get to "rounded"

freq_keys = rounded.map(lambda x: (x[3],[[x[0],x[1],x[2]]]))

reduced_freq = freq_keys.reduceByKey(lambda x,y: x+y)

freq_sorted = reduced_freq.takeOrdered(5, key = lambda x: -len(x[1]))
freq_sorted
[(5182,
 [[119, 97, 3206],
 [77, 78, 1623],
 [119, 96, 3221],
 [119, 96, 3217],
 [112, 82, 583],
 [84, 103, 1981],
 [64, 115, 96],
 [81, 100, 3551],
 [119, 96, 3210],
 [119, 97, 3202],
 [77, 78, 1616],
 [119, 96, 3213]]),
 (1706,
 [[108, 101, 1896],
 [108, 101, 1934],
 [109, 101, 1957],
 [108, 101, 1904],
 [108, 101, 1973],
 [108, 101, 1942],
 [108, 101, 1950],
 [108, 101, 1911],
 [108, 101, 1980],
 [108, 101, 1919],
 [108, 101, 1965],
 [108, 101, 1927]]),

Second Approach: Let's key on frequency.

(5402,
 [[82, 110, 1726],
 [96, 92, 3137],
 [82, 110, 1712],
 [82, 110, 1721],
 [76, 110, 2253],
 [109, 106, 1633],
 [82, 110, 1717],
 [82, 110, 1735],
 [82, 110, 1731],
 [109, 106, 1625]]),
 (6973,
 [[73, 100, 2471],
 [73, 100, 2442],
 [72, 100, 2450],
 [73, 100, 2446],
 [73, 100, 2487],
 [73, 100, 2512],
 [72, 100, 2467],
 [72, 100, 2475],
 [73, 100, 2479],
 [72, 100, 2508]]),
 (7592,
 [[66, 83, 1161],
 [66, 102, 3363],
 [90, 75, 2767],
 [90, 75, 2774],
 [73, 94, 3422],
 [68, 109, 410],
 [68, 109, 403],
 [66, 83, 1169],
 [66, 102, 3365]])]

Both 1706 MHz and 6973 MHz
look like strong candidates. And
6973 does indeed bleed into a
neighboring box.

Let's focus on just those two
frequency bands.

reduced_freq.lookup(6973)
[[[73, 100, 2471],
 [73, 100, 2442],
 [72, 100, 2450],
 [73, 100, 2446],
 [73, 100, 2487],
 [73, 100, 2512],
 [72, 100, 2467],
 [72, 100, 2475],
 [73, 100, 2479],
 [72, 100, 2508]]]

reduced_freq.lookup(6972)
[[[72, 100, 2491],
 [73, 100, 2483],
 [73, 100, 2458],
 [72, 100, 2495],
 [72, 100, 2504],
 [73, 100, 2499],
 [72, 100, 2454],
 [73, 100, 2462]]]

reduced_freq.lookup(6974)
[[[97, 78, 2139], [97, 78, 2148]]]

Second Approach: Let's key on frequency. (contd.)

Only 12 here. We have a winner!

reduced_freq.lookup(1706)
[[[108, 101, 1896],
 [108, 101, 1934],
 [109, 101, 1957],
 [108, 101, 1904],
 [108, 101, 1973],
 [108, 101, 1942],
 [108, 101, 1950],
 [108, 101, 1911],
 [108, 101, 1980],
 [108, 101, 1919],
 [108, 101, 1965],
 [108, 101, 1927]]]

reduced_freq.lookup(1707)
[[[92, 67, 135], [92, 89, 377]]]

reduced_freq.lookup(1705)
[[[94, 95, 2506]]]

18 correlated sources here.

Don't Panic!

This isn't a pass/fail assignment. Maybe
you didn't find the strongest source? As
long as you made a considered attempt,
there is plenty of credit to go around.
Hopefully, you gave me enough
code/comments to let me give you as
much as possible.

More Rigorous Solutions

I gave you permission to be a little casual about locating the source. And I gave you a dataset that wasn't
intentionally devious. But you can see that we could need to be more diligent about dealing with sources that get
rounded or sorted in odd ways.

If we wanted to pursue the analysis techniques that I am using here, we could scale up (normalize) our dataset
depending on the std, and consider more carefully what happens when a signal is on a bin boundary.

Let's use Spark to see how we can be a little more (although not completely) thorough.

Use same RDD's as prior approach to get to the "floats" RDD.

def shift_bin (x):
 std = 0.1
 up_shift = (x[0]+std,x[1],x[2],x[3])
 down_shift = (x[0]-std,x[1],x[2],x[3])
 return (x,up_shift,down_shift)

freq_first = floats.map(lambda x: (x[3],x[0],x[1],x[2]))
freq_smeared = freq_first.flatMap(shift_bin)
freq_rounded = freq_smeared.map(lambda x: (round(x[0]), x[1], x[2], x[3]))

freq_rounded.take(3)
[(5079, 98.98274915340335, 80.51828454605635, 5340.876552864837),
 (5079, 98.98274915340335, 80.51828454605635, 5340.876552864837),
 (5079, 98.98274915340335, 80.51828454605635, 5340.876552864837)]

freq_distinct = freq_rounded.distinct() # Dangerous to do with floats! Should really round properly first

freq_key_value = freq_distinct.map(lambda x: (x[0], [[x[1],x[2],x[3]]]))

reduced_freq = freq_key_value.reduceByKey(lambda x,y: x+y)

freq_sorted = reduced_freq.takeOrdered(10, key = lambda x: -len(x[1]))

Third Approach: Shifting data around before reducing.

freq_sorted
[(5182,
 [[118.52976392074571, 96.54201070629634, 3206.1214714999783],
 [77.45460061630328, 78.07530545083995, 1622.7858796279986],
 [118.64689982756818, 96.44132078278089, 3220.7666267843792],
 [118.59482658216085, 96.44941929769246, 3217.1068733712573],
 [111.8910509747487, 82.11533278823124, 583.0978357887793],
 [84.28463367457108, 103.23625952005631, 1980.5177436710767],
 [64.22176401688995, 114.73331621175502, 96.17267725692972],
 [81.26205876660073, 100.49647521225083, 3550.781584237549],
 [118.64551263852323, 96.49666570792286, 3209.784326499607],
 [118.70400080192714, 96.55672285267048, 3202.462710244625],
 [77.34895154230571, 77.89713080431697, 1616.348257398497],
 [118.56628035253055, 96.40234392252746, 3213.445682114889]]),
 (6973,
 [[72.50191364575532, 99.92189255143647, 2470.699753412948],
 [72.73381667361762, 99.83371460919332, 2442.003948596213],
 [72.39253672571188, 99.81561711859166, 2450.194875456176],
 [72.58351485796673, 99.75978902115273, 2446.099585222095],
 [72.55759922126946, 100.0294214129675, 2487.100038667084],
 [72.57307064374842, 99.85451048898713, 2511.701509335189],
 [72.51428256839976, 99.72397545952776, 2482.998216754375],
 [72.34625610801322, 100.0444800094792, 2466.598744544187],
 [72.13653068287205, 99.87661917278416, 2474.799710524056],
 [72.64006627072443, 99.78935257630796, 2478.899786929185],
 [72.40932961147622, 99.94220119655255, 2454.295945248991],
 [72.48122227881026, 99.84273302955303, 2507.600661605101]]),
 (1706,
 [[108.3443282919675, 100.84273369075228, 1895.8400028984754],
 [108.36077607279039, 100.8823430099223, 1934.2533854297046],
 [108.50283974674959, 100.79203616247979, 1957.3002332427275],
 [108.32695404645516, 100.92893729274489, 1903.5232083185826],
 [108.33282596888398, 100.68171905697531, 1972.6684081408775],
 [108.27555113633017, 100.84239054725518, 1941.9362817726542],
 [108.32603028445537, 100.98607041292506, 1949.6191849036916],
 [108.43945026646126, 100.80429909066194, 1911.20545694204],
 [108.41938821659426, 100.786398653622, 1980.3506962812596],
 [108.33984731223752, 100.88363740996039, 1918.888494813312],
 [108.32525890645205, 100.68360289978423, 1964.984398622469],
 [108.31696912684708, 100.69812697897636, 1926.571082107931]]),
...
,,,

Third Approach: Shifting data around before reducing. (contd.)

It's a little messy, but you can see
that we have an interesting signal
in the 6973 MHz band.

#take a step back and redo a few steps with rounded values. Just to make it easier to see.

freq_key_value_rounded = freq_distinct.map(lambda x: (x[0], [[round(x[1]),round(x[2]),round(x[3])]]))
reduced_freq_key_value_rounded = freq_key_value_rounded.reduceByKey(lambda x,y: x+y)
freq_rounded_sorted = reduced_freq_key_value_rounded.takeOrdered(4, key = lambda x: -len(x[1]))

freq_rounded_sorted
[(5182,
 [[119, 97, 3206],
 [77, 78, 1623],
 [119, 96, 3221],
 [119, 96, 3217],
 [112, 82, 583],
 [84, 103, 1981],
 [64, 115, 96],
 [81, 100, 3551],
 [119, 96, 3210],
 [119, 97, 3202],
 [77, 78, 1616],
 [119, 96, 3213]]),
 (6973,
 [[73, 100, 2471],
 [73, 100, 2442],
 [72, 100, 2450],
 [73, 100, 2446],
 [73, 100, 2487],
 [73, 100, 2512],
 [73, 100, 2483],
 [72, 100, 2467],
 [72, 100, 2475],
 [73, 100, 2479],
 [72, 100, 2454],
 [72, 100, 2508]]),
 (1706,
 [[108, 101, 1896],
 [108, 101, 1934],
 [109, 101, 1957],
 [108, 101, 1904],
 [108, 101, 1973],
 [108, 101, 1942],
 [108, 101, 1950],
 [108, 101, 1911],
 [108, 101, 1980],
 [108, 101, 1919],
 [108, 101, 1965],
 [108, 101, 1927]]),
 (6972,
 [[73, 100, 2442],
 [72, 100, 2491],
 [73, 100, 2483],
 [73, 100, 2458],
 [73, 100, 2479],
 [72, 100, 2495],
 [72, 100, 2504],
 [73, 100, 2499],
 [72, 100, 2454],
 [72, 100, 2508],
 [73, 100, 2462]])]

Third Approach: Shifting data around before reducing. (contd.)

#Now that I have the answer, I'll just do a quick python sort on the timebase to clean it up.

data = freq_rounded_sorted[1][1]

data.sort(key = lambda x: x[2])

data
[[73, 100, 2442],
 [73, 100, 2446],
 [72, 100, 2450],
 [72, 100, 2454],
 [72, 100, 2467],
 [73, 100, 2471],
 [72, 100, 2475],
 [73, 100, 2479],
 [73, 100, 2483],
 [73, 100, 2487],
 [72, 100, 2508],
 [73, 100, 2512]]

Third Approach: Shifting data around before reducing. (contd.)

Once again we find that coords 73,100
really do have a single source of frequency
6792 MHz. With a cycle time of ~4s.

Notice we are missing a few points from
our other analysis. If we go back and look
and the floating point values, they fell just
outside our 1 STD. We could relax that in
our shift function.

Creating a Reusable Solution

We did this in an exploratory mode, which is a wonderful capability of Spark. You can play around will real
datasets, not just toy problems.

However we might want to pull these ideas together and create a rigorous code. For our spatial approach, we can
use the same shift technique, but now in two dimensions. If we think about the worst case scenario in which our
target cluster is centered on a border, we would realize that no single shift is assured to not land on another
border. We would actually need two slides just to be sure.

We could also make the (rounded) frequency part of the key to deal with distinguishing frequencies at the same
time. We would also need to do a similar bin shift trick there as well.

If you are worried about how well this scales, especially as we consider we may want more boxes as our resolution
goes up, realize that this technique scales proportionate to the number of sources, not the number of bins of the
size of the sky.

And of course there are alternate techniques as well.

Assignment
Generators

(for your eyes only)

Assignment Dataset Generators

• We provide the tools for you to generate your own problem sets.

• This avoids cheating (to some extent).

• And allow you to choose difficulty.

Here are some example distributions. They may be simple and few:

Or they may be more complex:

They might even have noise:

Advanced

Data Analysis

Assignment Review

The Big Reveal: What was in our data?

Oh yeah, it's 6 dimensional.

We are going to have to work for
it.

Let's dive in and see what we can
peel apart.

input_rdd = sc.textFile('Assignment2.dat').map(lambda x:x.split(',')).map(lambda x:
[float(x[0]),float(x[1]),float(x[2]),float(x[3]),float(x[4]),float(x[5])])

input_rdd.take(3)
[[57.47974084562296,
 55.44945810334027,
 54.241594907920344,
 52.41360437021964,
 54.93100799212413,
 51.78432087598154],
 [70.46721670551902,
 71.53278329448098,
 ...

from pyspark.mllib.clustering import KMeans

for clusters in range(1,10):
 model = KMeans.train(input_rdd, clusters)
 print (model.computeCost(input_rdd))

22813322.102508288
8222110.121083168
1953379.9003032786
1345930.143051648
248637.68427582923
240944.69344685183
238758.14649268807
152969.2321060632
137938.55840308202

First dive: How many "things" are there?

for clusters in range(1,10):
 model = KMeans.train(input_rdd, clusters)
 print (model.computeCost(input_rdd))

22813322.102508288
8222110.121083168
1953379.9003032786
856087.4415274587
248637.68427582923
174234.43071089557
166391.823094679
143271.65116005158
157528.57192476804

Let's verify repeatability/stability

pred = model.predict(input_rdd)
clusters = input_rdd.zip(pred)

clusters.take(3)
[([57.47974084562296,
 55.44945810334027,
 54.241594907920344,
 52.41360437021964,
 54.93100799212413,
 51.78432087598154],
 3),
 ([70.46721670551902,
 71.53278329448098,
 71.53278329448098,
 71.53278329448098,
 71.53278329448098,
 71.53278329448098],
 2),
 ([54.26327405498564,
 58.49493372842324,
 54.75498592333371,
 55.703180938852945,
 52.83741473654931,
 51.4028551634724],
 3)]

What can we say about these five objects?

These coordinates can't be a
coincidence. Once again,
what an awfully kind
problem creator!

model = KMeans.train(input_rdd, 5)
centers = model.clusterCenters
print(centers)
[array([29.8592193 , 30.00769653, 30.02190367, 80.00416938, 79.97828141, 80.02146926]),
 array([39.99730091, 39.99272142, 40.00456747, 14.99162554, 15.00305203, 15.02544602]),
 array([70.99050247, 71.00221983, 71.00221983, 71.00221983, 71.00221983, 71.00221983]),
 array([54.97439287, 55.02510453, 54.97981585, 54.96350913, 55.04625848, 55.00612376]),
 array([23.95388832, 23.95388832, 23.95388832, 23.95388832, 23.95388832, 23.95388832])]

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import PCA

For each of the labeled clusters: get a count, center cluster and do PCA
for cluster_num in range(5):
 cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x: x[0])
 print("Cluster ",cluster_num," has count ",cluster.count())
 center = [float(x) for x in centers[cluster_num]]
 centered_cluster = cluster.map(lambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]])
 df = spark.createDataFrame(centered_cluster)
 assembler = VectorAssembler(inputCols=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')
 ndf = assembler.transform(df)
 pca = PCA(k=6, inputCol="feat_vec", outputCol="pca_features")
 model = pca.fit(ndf)
 print("Cluster: ",cluster_num," explainedVarience: ", model.explainedVariance)

Cluster 0 has count 3000
Cluster: 0 explainedVarience: [0.669525536882, 0.1662797338236, 0.16419473782323, 2.45886121026e-16, 5.5166246758226e-17, 2.202681855118e-17]
Cluster 1 has count 1500
Cluster: 1 explainedVarience: [0.517083515243, 0.4829164846848, 1.1240263947e-16, 7.59536857127e-17, 2.2841893262568e-17, 3.756984397667e-18]
Cluster 2 has count 1000
Cluster: 2 explainedVarience: [0.833387789374, 0.1666122103404, 2.4712754937e-32, 1.82764934226e-63, 3.0036689526738e-95, 0.0]
Cluster 3 has count 2500
Cluster: 3 explainedVarience: [0.177078608271, 0.1757344315469, 0.17084112066742, 0.163726169637072, 0.16048767756223278, 0.1521359974611792]
Cluster 4 has count 1000
Cluster: 4 explainedVarience: [0.999999999999, 5.788192129e-17, 2.7961406066e-48, 2.06790561697e-79, 3.398520641703e-111, 0.0]

PCA might tell me something. Why DataFrames?

Many of you seem to prefer DataFrames. The DataFrame PCA offered
me some useful functionality that I would have had to write myself for
the RDD version of PCA, notably the explained variance.

As DataFrame APIs are picky about datatypes, I just went with the
VectorAssembler helper routine to create my inputs.

We just include all our columns here, but you should know about this
for when you are constructing more selective input features in your own
complex applications.

These cluster sizes are a
dead giveaway that you are
on the right track.

Cluster 0 has count 3000
Cluster: 0 explainedVarience: [0.669525536882, 0.1662797338236, 0.16419473782323, 2.45886121026e-16, 5.5166246758226e-17, 2.202681855118e-17]
Cluster 1 has count 1500
Cluster: 1 explainedVarience: [0.517083515243, 0.4829164846848, 1.1240263947e-16, 7.59536857127e-17, 2.2841893262568e-17, 3.756984397667e-18]
Cluster 2 has count 1000
Cluster: 2 explainedVarience: [0.833387789374, 0.1666122103404, 2.4712754937e-32, 1.82764934226e-63, 3.0036689526738e-95, 0.0]
Cluster 3 has count 2500
Cluster: 3 explainedVarience: [0.177078608271, 0.1757344315469, 0.17084112066742, 0.163726169637072, 0.16048767756223278, 0.1521359974611792]
Cluster 4 has count 1000
Cluster: 4 explainedVarience: [0.999999999999, 5.788192129e-17, 2.7961406066e-48, 2.06790561697e-79, 3.398520641703e-111, 0.0]

Looks like cluster 0 is 3000 points in a 3 dimensional shape, with 2 very similar dimensions and 1 longer.

Looks like cluster 1 is 1500 points in a 2 dimensional shape or roughly equal extents (ball, cube, dodecahedron?).

Looks like cluster 2 is 1000 points also in a 2 dimensional shape, but of seemingly unequal extents (rectangle? The letter "I"? An ellipsoid?).

Looks like cluster 3 is 2500 points in a 6 dimensional shape with fairly equal extents.

Looks like cluster 4 is 1000 points in a very, very straight line.

What do we know so far?

cluster_num = 4
cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x: x[0])
start0 = cluster.map(lambda x: x[0]).reduce(lambda x,y: min(x,y))
print(start0)
end0 = cluster.map(lambda x: x[0]).reduce(lambda x,y: max(x,y))
print(end0)
20.001463417223093 27.995299694613074

#should do this for all 6 coords...

start5 = cluster.map(lambda x: x[5]).reduce(lambda x,y: min(x,y))
print(start5)
end5 = cluster.map(lambda x: x[5]).reduce(lambda x,y: max(x,y))
print(end5)
20.001463417223093 27.995299694613074

It appears we have a line that goes from 20,20,20,20,20,20 to 28,28,28,28,28,28

Again, John is playing nice. The round numbers for point counts and coordinates are unlikely to be accidents.

Easiest first: What is there to say about a line?

PCA vectors tell us 3 things...

• The significance of each dimension
• The orientation of the data
• The transformation to the lower dimensional space

cluster_num = 1
cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x: x[0])
center = [float(x) for x in centers[cluster_num]]
centered_cluster = cluster.map(lambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]])
df = spark.createDataFrame(centered_cluster)
assembler = VectorAssembler(inputCols=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')
ndf = assembler.transform(df)
pca = PCA(k=2, inputCol="feat_vec", outputCol="pca_features")
model = pca.fit(ndf)
x = model.transform(ndf).select('pca_features')
y = x.rdd.map(lambda x: [x[0][0],x[0][1]])
z = y.map(lambda x: str(x[0])+', '+str(x[1]))
z = z.repartition(1)
z.saveAsTextFile('2D data')

How about those 2-dimensional shapes?
Why think? Just plot!

x = x.select('pca_features')

x.show(truncate=False)

+---+
|pca_features |
+---+
|[-11.442801230730225,-2.2456486179091795]|
|[8.199412704320977,-4.758034893331184] |
|[-10.244417347787193,0.5396575347829049] |
|[-11.869736554573121,-1.4845929620214862]|
|[-3.5546269239632644,-4.233601618163395] |
|[2.7393561531172796,0.6760682876532856] |
|[13.30478751297807,-0.9023265952197561] |
|[-5.988746172900853,-4.015718103211636] |
|[-14.53534496511185,-4.0009984448800555] |
|[4.837789089973879,4.04799491602994] |
|[8.897186913650424,-2.0837450631466874] |
|[-1.708504262340559,0.03667661547683404] |
|[-1.1697623781406488,3.40020825795184] |
|[-1.2026596484091905,-3.8974522565315635]|
|[-3.671529907044845,-4.137095253338099] |
|[-9.267303730165965,4.855142027927819] |
|[-5.052591326725931,3.5269543649986637] |
|[12.936260914202773,-2.2082924731603573] |
|[-11.598584911100225,-0.6754460111338405]|
|[7.4124164286566945,-1.0304226290413516] |
+---+

y = x.rdd.map(lambda x: [x[0][0],x[0][1]])
z = y.map(lambda x: str(x[0])+', '+str(x[1]))
z = z.repartition(1)
z.saveAsTextFile('2D.dat')

Just keeping the transformed 2D data and formatting output (boring).

I'm hauling around a lot of unnecessary data in these
dataframes, just for illustrative purposes and
debugging. I might want to trim that out for efficiency
to scale this up.

Looks like a circle to me - if you pay attention to the axis scale, that is. So, putting it together, we have:

• 1500 points
• Circle
• Radius about 3
• Centered at 40,40,40,15,15,15

We could even get the orientation from the PCA vectors (but plotting 6D rotation is tough)

Summary for second object

cluster_num = 2
cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x: x[0])
center = [float(x) for x in centers[cluster_num]]
centered_cluster = cluster.map(lambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]])
df = spark.createDataFrame(centered_cluster)
assembler = VectorAssembler(inputCols=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')
ndf = assembler.transform(df)
pca = PCA(k=2, inputCol="feat_vec", outputCol="pca_features")
model = pca.fit(ndf)
x = model.transform(ndf).select('pca_features')
y = x.rdd.map(lambda x: [x[0][0],x[0][1]])
z = y.map(lambda x: str(x[0])+', '+str(x[1]))
z = z.repartition(1)
z.saveAsTextFile('2D data')

Same for other 2 dimensional shape

Looks like a cross to me. So, putting it together, we have:

• 1000 points
• X Shape or cross
• Size of ~ 2 x 4 (I'm not picky)
• Centered at 71,71,71,71,71,71

We could again get the orientation from the PCA vectors (but plotting 6D rotation is still tough)

Summary for other 2D object

cluster_num = 0
cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x: x[0])
center = [float(x) for x in centers[cluster_num]]
centered_cluster = cluster.map(lambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]])
df = spark.createDataFrame(centered_cluster)
assembler = VectorAssembler(inputCols=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')
ndf = assembler.transform(df)
pca = PCA(k=3, inputCol="feat_vec", outputCol="pca_features")
model = pca.fit(ndf)
x = model.transform(ndf).select('pca_features')
y = x.rdd.map(lambda x: [x[0][0],x[0][1],x[0][2]])
z = y.map(lambda x: str(x[0])+', '+str(x[1])+', '+str(x[2]))
z = z.repartition(1)
z.saveAsTextFile('3D data.dat')

Let's try the same with the 3D cluster.

This is a rectangular box. I rotated the perspective a bit to convince myself. Putting its data together, we have:

• 3000 points
• Rectangular box
• About 10x10x20
• Centered at 30,30,30,80,80,80

Once again, the orientation (from PCA) tells us its angle in 6D.

Our 3D Object

import csv My matplotlib

points = []
with open('3d.dat', newline='') as csvfile:
 spamreader = csv.reader(csvfile)
 for row in spamreader:
 points.append((float(row[0]),float(row[1]),float(row[2])))
 print(row)

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(16,16))
ax = fig.add_subplot(projection='3d')
ax.scatter([x[0] for x in points], [x[1] for x in points], [x[2] for x in points])
ax.view_init(elev=0,azim=80)

We can't visualize. We can note that the explained variance here

 0.177 0.175 0.170 0.163 0.160 0.152

suggests a fairly symmetric shape.

So maybe it is a ball. But could it be a polyhedron? Or maybe a hollow 6D sphere or a
gaussian distribution? Or maybe the "curse of dimensionality" has this effect on
variance.

I did a histogram of point distances from the cluster center. We might hope that it
would reveal the shape. In this case we would find a it mostly follows a 5th power curve
(which corresponds to a 6D ball), but it does not cutoff as we would expect for a
ball. It has a "tail". That does eventually cut off abruptly.

We could develop a few curves for common regular polygons. We would find that this one
corresponds to a cube. And the last point gives us the half diagonal length.

How about that 6-dimensional cluster?

I don't expect that any of you went that far! If you guessed:

• 2500 points
• "Roundish" shape
• Size (side) of ~7
• Centered at 55,55,55,55,55,55

Then congratulations. I think you did very well.

6D Ball

6D Cube

KMeans (and most clustering approaches) have no notion of outliers. Every point gets assigned to a cluster. This introduces
issues when faced with noise. Here is a simple dataset.

A quick discussion about noise and outliers.

KMeans does well and gives us a sensible clustering.

 Cost Clusters
1212077 (45 , 52)
 384888 (63 , 82) (40 , 41)
 65392 (47 , 34) (24 , 55) (63 , 82)
 15430 (24 , 55) (63 , 82) (53 , 38) (41 , 31)
 11707 (53 , 38) (22 , 57) (63 , 82) (41 , 31) (26 , 54)
 9401 (25 , 59) (63 , 82) (53 , 38) (27 , 53) (41 , 31) (21 , 55)
 8313 (63 , 82) (53 , 38) (23 , 58) (40 , 30) (22 , 53) (28 , 55) (42 , 32)
 7412 (22 , 53) (63 , 82) (53 , 38) (39 , 30) (23 , 58) (41 , 33) (28 , 55) (43 , 30)
 7081 (63 , 82) (53 , 38) (28 , 56) (39 , 32) (24 , 51) (22 , 57) (43 , 30) (40 , 29) (41 , 33)

Add in a little noise (10%) and it is a little less obvious where our cost "elbow" is. But perhaps we are still OK.

A little noise.

The cluster centers are still reasonable too.

 Cost Clusters
1542624 (46 , 51)
 616768 (64 , 81) (40 , 41)
 224474 (24 , 56) (48 , 34) (64 , 81)
 145791 (40 , 30) (64 , 82) (24 , 56) (56 , 37)
 104353 (24 , 56) (64 , 82) (54 , 38) (83 , 32) (40 , 30)
 89475 (40 , 30) (63 , 82) (84 , 55) (24 , 56) (54 , 38) (79 , 17)
 77963 (24 , 55) (63 , 82) (54 , 38) (40 , 30) (16 , 78) (84 , 55) (78 , 17)
 68325 (41 , 31) (63 , 82) (21 , 60) (54 , 38) (25 , 54) (85 , 70) (17 , 16) (83 , 26)
 63991 (54 , 38) (63 , 82) (24 , 56) (83 , 40) (17 , 10) (18 , 34) (41 , 31) (74 , 11) (87 , 75)

If we increase the noise to 33% it becomes hard to be confident about the cluster count. My best guess might be 3...

A little more noise.

And the cluster centers are no longer reliable.

 Cost Clusters
2911714 (47 , 51)
1515577 (62 , 80) (40 , 38)
 844979 (50 , 31) (66 , 80) (22 , 57)
 638983 (45 , 32) (65 , 81) (22 , 58) (81 , 27)
 492621 (23 , 60) (65 , 81) (19 , 17) (48 , 34) (81 , 26)
 398572 (81 , 26) (66 , 81) (24 , 55) (19 , 85) (20 , 16) (48 , 34)
 438669 (45 , 32) (79 , 17) (22 , 52) (65 , 83) (18 , 85) (53 , 62) (86 , 58)
 301994 (43 , 11) (62 , 81) (13 , 20) (48 , 35) (87 , 73) (81 , 24) (24 , 55) (18 , 85)
 289378 (23 , 60) (61 , 82) (41 , 31) (10 , 29) (82 , 49) (27 , 9) (54 , 38) (88 , 84) (78 , 14)

As the S/N ratio hits 1, it becomes very hard to find any elbow.

The real world often involves noise. Be aware of this limitation.

If there was an easy fix ("import super-k-means"), we would be using it.
There are solutions, such as algorithms where you specify the S/N, but no
magic bullets.

Significant noise.

Even if we cheat and look at 4 clusters, the cluster centers
are problematic.

 Cost Clusters
4532592 (48 , 50)
2646052 (42 , 36) (60 , 79)
1553843 (21 , 58) (52 , 29) (67 , 79)
1122661 (22 , 61) (66 , 80) (80 , 26) (43 , 31)
 981406 (79 , 54) (22 , 61) (43 , 30) (63 , 83) (79 , 15)
 741845 (22 , 62) (80 , 18) (48 , 35) (60 , 82) (20 , 17) (84 , 67)
 811270 (63 , 31) (22 , 54) (87 , 67) (35 , 26) (53 , 60) (20 , 84) (63 , 84)
 586240 (22 , 54) (86 , 68) (55 , 39) (64 , 82) (12 , 83) (36 , 25) (81 , 17) (40 , 81)
 462873 (48 , 35) (15 , 19) (47 , 10) (61 , 82) (83 , 15) (20 , 84) (23 , 55) (87 , 81) (78 , 49)

	Slide 1
	Slide 2: Some Introductory Comments
	Slide 3: Development Status
	Slide 4: The Plan
	Slide 5: Prereqs
	Slide 6: Grading, ChatGPT and the future...
	Slide 7: And now... Data Science Modules 1 & 2
	Slide 8: The landscape your students are facing.
	Slide 9: Data Science Today
	Slide 10: Pandas
	Slide 11: Our First Dataset
	Slide 12: Getting Started with Pandas
	Slide 13: DataFrame Queries
	Slide 14: DataFrame Queries
	Slide 15: DataFrame Conditional Queries
	Slide 16: DataFrame Sorting
	Slide 17: If you like pictures (matplotlib)
	Slide 18: First Assignment: Find a survival factor
	Slide 19: Assignment: Can we find a significant survival variable?
	Slide 20: Titanic Assignment Review
	Slide 21: Getting Started with Titanic
	Slide 22: How did the women fare?
	Slide 23: Women and children first!?
	Slide 24: NaNs are everywhere!
	Slide 25: Women and children first!
	Slide 26: How did Thurston Howell III make out?
	Slide 27: Grouping
	Slide 28: SQL
	Slide 29: Big Data
	Slide 30
	Slide 31: Once there was only small data...
	Slide 32: Less sophisticated is sometimes better…
	Slide 33: The culmination of centuries...
	Slide 34: Then data started to grow.
	Slide 35: And finally got BIG.
	Slide 36: A better sense of biggish
	Slide 37: Good Ol’ SQL couldn't keep up. Oracle
	Slide 38: So we gave up: Key-Value Redis, Memcached, Amazon DynamoDB, Riak, Ehcache
	Slide 39: How does a pile of unorganized data solve our problems?
	Slide 40: Document
	Slide 41: Wide Column Stores Google BigTable
	Slide 42: Graph Titan, GEMS
	Slide 43: Queries SPARQL, Cypher
	Slide 44: Graph Databases
	Slide 45: Hadoop & Spark
	Slide 46: Frameworks for Data
	Slide 47: Spark
	Slide 48: Spark Capabilities (i.e. Hadoop shortcomings)
	Slide 49: Same Idea (improved)
	Slide 50: Spark Formula
	Slide 51: Simple Example
	Slide 52: Simple Example
	Slide 53: Common Transformations
	Slide 54: Common Actions
	Slide 55: Transformations vs. Actions
	Slide 56: Pair RDDs
	Slide 57: Pair RDD Transformations
	Slide 58: Pair RDD Actions
	Slide 59: Two Pair RDD Transformations
	Slide 60: Joins Are Quite Useful
	Slide 61: Shakespeare, a Data Analytics Favorite
	Slide 62: Some Simple Problems
	Slide 63: Some Simple Answers
	Slide 64: Some Harder Answers
	Slide 65: Spark Anti-Patterns
	Slide 66: Some Homework Problems
	Slide 67: Who needs this Spark stuff?
	Slide 68: Optimizations
	Slide 69: Persistence
	Slide 70: Partitions
	Slide 71: Parallel Programming Features
	Slide 72: Performance & Debugging
	Slide 73: IO Formats
	Slide 74: Spark Streaming
	Slide 75: A Few Words About DataFrames
	Slide 76: Creating DataFrames
	Slide 77: Creating DataFrames
	Slide 78: Just Spark DataFrames making life easier...
	Slide 79: And Sometime DataFrames Are Limiting
	Slide 80: Speaking of pandas, or SciPy, or...
	Slide 81: Other Scalable Alternatives: Dask
	Slide 82: Run My Programs Or Yours exec()
	Slide 83: Machine Learning
	Slide 84: Using MLlib
	Slide 85: Clustering
	Slide 86: Clustering
	Slide 87: Finding Clusters
	Slide 88: Finding Our Way
	Slide 89: Finding Clusters
	Slide 90: Finding Clusters
	Slide 91: Finding Clusters
	Slide 92: Right Answer?
	Slide 93: Find the Centers
	Slide 94: Fit?
	Slide 95: 16 Clusters
	Slide 96: We are closer to leading edge science than you might think.
	Slide 97: Assignment: Using Spark to mine astro signals
	Slide 98: A brief word about errors...
	Slide 99: How to approach an algorithmic problem...
	Slide 100: Assignment: Using Spark to mine astro signals
	Slide 101: Dimensionality Reduction
	Slide 102: Why all these dimensions?
	Slide 103: Why all these dimensions?
	Slide 104: Curse of Dimensionality
	Slide 105: Metrics
	Slide 106: Alternative DR: Principal Component Analysis
	Slide 107: Alternative DR: Principal Component Analysis
	Slide 108: Why So Many Alternatives?
	Slide 109: Principal Component Analysis Fail
	Slide 110: Why the fascination with linear techniques?
	Slide 111: Why Would An Image Have 784 Dimensions?
	Slide 112: Central Hypothesis of Modern DL
	Slide 113
	Slide 114: How does all this fit together?
	Slide 115: The Journey Ahead
	Slide 116: Clustering Assignment Review
	Slide 117: Our particular problem.
	Slide 118: Spark will buy us scalability.
	Slide 119: First Approach: Sort Coordinates Into Bins
	Slide 120: First Approach: Sort Coordinates Into Bins (contd.)
	Slide 121: First Approach: Sort Coordinates Into Bins (contd.)
	Slide 122: Second Approach: Let's key on frequency.
	Slide 123: Second Approach: Let's key on frequency. (contd.)
	Slide 124: More Rigorous Solutions
	Slide 125: Third Approach: Shifting data around before reducing.
	Slide 126: Third Approach: Shifting data around before reducing. (contd.)
	Slide 127: Third Approach: Shifting data around before reducing. (contd.)
	Slide 128: Third Approach: Shifting data around before reducing. (contd.)
	Slide 129: Creating a Reusable Solution
	Slide 130: Assignment Generators (for your eyes only)
	Slide 131: Assignment Dataset Generators
	Slide 132:
	Slide 133:
	Slide 134: Advanced Data Analysis Assignment Review
	Slide 135: The Big Reveal: What was in our data?
	Slide 136: First dive: How many "things" are there?
	Slide 137: Let's verify repeatability/stability
	Slide 138: What can we say about these five objects?
	Slide 139: PCA might tell me something.
	Slide 140: What do we know so far?
	Slide 141: Easiest first: What is there to say about a line?
	Slide 142: PCA vectors tell us 3 things...
	Slide 143: How about those 2-dimensional shapes? Why think? Just plot!
	Slide 144: Just keeping the transformed 2D data and formatting output (boring).
	Slide 145: Summary for second object
	Slide 146: Same for other 2 dimensional shape
	Slide 147: Summary for other 2D object
	Slide 148: Let's try the same with the 3D cluster.
	Slide 149: Our 3D Object
	Slide 150: How about that 6-dimensional cluster?
	Slide 151: A quick discussion about noise and outliers.
	Slide 152: A little noise.
	Slide 153: A little more noise.
	Slide 154: Significant noise.

