ADAPT Introductory Modules

Data Science and Machine Learning

John Urbanic
Parallel Computing Scientist
Distinguished Service Professor
Pittsburgh Supercomputing Center

Some
Introductory
Comments

Development Status

- Our intention way, way back in April, was that these would be 2 completely defined 4class modules. Today would have been a detailed morning walk-through ("teach the teacher") of Module 1, and an afternoon walkthrough of Module 2.
- We came to realize that this community has other summer session priorities, and our development could not proceed in a vacuum, without your expertise and feedback.
- We have adopted a more flexible approach to today's launch. We are presenting the content as a whole, and welcoming your adoption as you see fit.
- This is not a generally scalable approach. We will have to standardize the module content. As soon as next semester.
- As such, your use and feedback this semester will be very influential in the shape that this program assumes.

The Plan

- Our original plan was to start with these "beginner" modules. Which we have done.
- This was actually the most effort-intensive content to develop as it was a gap in our existing materials. We generally start just beyond these subjects, as many of our prior audiences either know this material, or find it less exciting.
- But this is the foundation for the machine learning that immediately follows. We would be remiss to give this short shrift.
- This content is also the least challenging computationally. If this was our final destination, we might just do this with Jupyter notebooks on laptops.
- But after covering this ground, you and your students can seamlessly tread into the leading edge, using supercomputers and GPUs to attack interesting problems in big data and AI, adding stand-out experience to their resumes and applications.

Prereqs

- Our goal is that each module is stand-alone, and the only formal pre-requisite is a basic knowledge of Python.
- There is a logical ordering, and eventually using these in series could comprise an entire course.
- We are intentionally avoiding the Linux command line almost entirely. We do not want this to be an implicit pre-requisite, nor do we have time for detours in our modules.
- However, this is a very useful topic, and it could become a mini-module if there is demand.

Grading, ChatGPT and the future...

- We recognize that Al tools, like ChatGPT are both a boon and a hindrance for an educator.
- But, they are the current reality, and only likely to become more so.
- We have embraced this reality in two substantial ways:
- We acknowledge that using these tools to write code is becoming an accepted practice. One immediate effect is that exhaustive coverage of all of the commands or routines in any given software toolkit is no longer an efficient way to teach a subject. We instead present a survey with the expectation that the student can find a particular command at the time of need.
- We have attempted to develop our assignments in such a way that they are not trivial to solve with chatbots. Details as we get there. However, this is undoubtably an ongoing challenge.

And now...
 Data Science Modules 1 \& 2

The
landscape your students are facing.

Big Data

As the Data Scientist wanders across the ill-defined boundary between Data Science and Machine Learning, in search of the fabled land of Artificial Intelligence, they find that the language changes from programming to a creole of linear algebra and probablity and statistics.

Data Science Today

- Basic Data
- Pandas 朋 pandas
- "Serious" Data Science
- SQL

Spl

- Big Data
- Spark Spark

Pandas

- Pandas has become the standard Python way to input, manipulate and write basic data.
- It also integrates well with other tools, like visualizing with Matplotlib.
- It has limitations, which is why SQL and big data techniques are essential for many tasks, but for quick-and-dirty, or limited applications it is very efficient.
- In many Python environments, it is there by default. If not, it is easy to add. In this course, if you start a python shell, it will be there.

Our First Dataset

We will begin our exploration of Pandas using a well known dataset drawn from the infamous Titanic disaster.

It has a variety of data on each of 891 passengers.

Amongst the typical demographic data is included their survival. It enables an interesting, if somewhat morbid, analysis to determine the foremost factors in survival. Women and children first? Or, save the rich?

Getting Started with Pandas

```
import pandas as pd
titanic = pd.read_csv("titanic.csv")
```

Smart, understands "csv"

DataFrame Queries

titanic["Name"]

0

Braund, Mr. Owen Harris
Cumings, Mrs. John Bradley (Florence Briggs Th...
Heikkinen, Miss. Laina Futrel7e, Mrs. Jacques Heath (Lily May Pee7)

A77en, Mr. wit7iam Henry
Montvila, Rev. Juozas
Graham, Miss. Margaret Edith
Johnston, Miss. Catherine He7en "Carrie"
Behr, Mr. Kar7 Howe 77
Dooley, Mr. Patrick

DataFrame Queries

```
titanic[["Age","Sex"]]
Age Sex
O 22.0 ma7e
1 38.0 fema7e
26.0 female
35.0 fema7e
35.0 ma7e
886 27.0 ...
887 19.0 female
888 NaN female
889 26.0 ma7e
890 32.0 ma7e
```


DataFrame Conditional Queries

titanic[titanic["Age"]>30]

	PassengerId	Survived	Pc7ass	Name	Sex	Age	sibsp	Parch	Ticket	Fare	Cabin	Embarked
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th.	female	38.0	1	0	PC 17599	71.2833	C85	C
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Al7en, Mr. William Henry	ma7e	35.0	0	0	373450	8.0500	NaN	S
6	7	0	1	McCarthy, Mr. Timothy J	ma7e	54.0	0	0	17463	51.8625	E46	S
11	12	1	1	Bonne77, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
873	874	0	3	r	ma7e	47.0	0	0	345765	9. 0000	NaN	S
879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia wilson)	fema7e	56.0	0	1	11767	83.1583	C50	C
881	882	0	3	Markun, Mr. Johann	ma7e	33.0	0	0	349257	7.8958	NaN	S
885	886	0	3	Rice, Mrs. Wil7iam (Margaret Norton)	female	39.0	0	5	382652	29.1250	NaN	Q
890	891	0	3	Dooley, Mr. Patrick	ma7e	32.0	0	0	370376	7.7500	NaN	Q

DataFrame Sorting

titanic.sort_values (by="Age") [["Name", "Age"]		
	Name	Age
803	Thomas, Master. Assad Alexander	0.42
755	Hamalainen, Master. Viljo	0.67
644	Baclini, Miss. Eugenie	0.75
469	Baclini, Miss. Helene Barbara	0.75
78	Caldwe77, Master. Alden Gates	0.83
859	Razi, Mr. Raihed	NaN
863	Sage, Miss. Dorothy Edith "Dolly"	NaN
868	van Me7kebeke, Mr. Philemon	NaN
878	Laleff, Mr. Kristo	NaN
	Johnston, Miss. Catherine Helen "Carrie"	NaN
titanic.sort_values (by="Age") [["Name"		
	Name	Age
803	Thomas, Master. Assad Alexander	0.42
755	Hamalainen, Master. Viljo	0.67
644	Baclini, Miss. Eugenie	0.75
469	Baclini, Miss. Helene Barbara	0.75
78	Ca7dwe77, Master. Alden Gates	0.83
		. .
859	Razi, Mr. Raihed	NaN
863	Sage, Miss. Dorothy Edith "Dol7y"	NaN
868	van Melkebeke, Mr. Philemon	NaN
878	Laleff, Mr. Kristo	NaN
888	Johnston, Miss. Catherine Helen "Carrie"	NaN

```
import matplotlib.pyplot as plt
titanic["Age"].hist(bins=30)
plt.show()
```


This assumes you have an X server running on your laptop.

Which we do.

First Assignment:
Find a survival factor

Assignment: Can we find a significant survival variable?

Can you find a significant factor in the data which could be used to predict survival rates?

I will suggest you focus on one variable at a time.

Note that there are many possible answers. Going from a simple hypothesis ("Maybe people from Cherbourg are unlucky?") to a more complex formula incorporating multiple variables - with the goal of a more accurate prediction - is the path of data analysis. This is our first step on that journey.

Connect to adaptpa. psc.edu, and start "python".

Find a meaningful factor and send me your full analysis (maybe just a few lines) and results.

Email to whatever@wherever.edu

This is due by January $1^{\text {st }}, 2045$.

Titanic
 Assignment Review

Getting Started with Titanic

```
import pandas as pd
titanic = pd.read_csv("titanic.csv")
```

males = titanic[titanic["Sex"]=="male"]

	PassengerId	Survived	Pc7ass	Name	Sex	Age	Sibsp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
4	5	0	3	Allen, Mr. William Henry	ma7e	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	ma7e	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	ma7e	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	ma7e	2.0	3	1	349909	21.0750	NaN	S
883	884	0	2	Banfield, Mr. Frederick James	ma7e	28.0	0	0	C.A./SOTON 34068	10.5000	NaN	S
884	885	0	3	Sutehal7, Mr. Henry Jr	ma7e	25.0	0	0	SOTON/OQ 392076	7.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	ma7e	27.0	0	0	211536	13.0000	NaN	S
889	890	1	1	Behr, Mr. Kar7 Howe77	ma7e	26.0	0	0	111369	30.0000	C148	C
890	891	0	3	Dooley, Mr. Patrick	ma7e	32.0	0	0	370376	7.7500	NaN	Q

males.shape
(577, 12)
males[males["Survived"]==1] . shape
(109, 12)
109/577
0.18890814558058924

```
titanic[titanic["Sex"]=="female"].shape
```

$(314,12)$
titanic[(titanic["Sex"]=="female") \& (titanic["Survived"]==1)]. shape
$(233,12)$

233/314
0.7420382165605095
74\% Survival Rate for Females
Hypothesis confirmed: chivalry not dead.
But Jack Dawson is.

Women and children first!?

```
men = titanic[ (titanic["Sex"]=="male") & (titanic["Age"]>15) ]
men.shape
(413, 12)
men[ men["Survived"]==1 ].shape
(72, 12)
```


NaNs are everywhere!

```
women_and_children = titanic[ (titanic["sex"]=="female") | (titanic["Age"]<16) ]
women_and_children.shape
```

$(354,12)$
\#Seems like some people are missing...

titanic[titanic["Age"].isna()]

	PassengerId	Survived	Pclass
5	6	0	3
17	18	1	2
19	20	1	3
26	27	0	3
28	29	1	3
\ldots	\ldots	\ldots	\ldots
859	860	0	3
863	864	0	3
868	869	0	3
878	879	0	3
888	889	0	3

Name	Sex	Age	Sibsp	Parch	Ticket	Fare	Cabin	Embarked
Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000	NaN	S
Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250	NaN	C
Emir, Mr. Farred Chehab	male	NaN	0	0	2631	7.2250	NaN	c
O'Dwyer, Miss. Ellen "Nellie"	female	NaN	0	0	330959	7.8792	NaN	Q
Razi, Mr. Raihed	male	NaN	0	0	2629	7.2292	NaN	C
Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	CA. 2343	69.5500	NaN	
van Melkebeke, Mr. Philemon	male	NaN	0	0	345777	9.5000	NaN	
Laleff, Mr. Kristo	male	NaN	0	0	349217	7.8958	NaN	
Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	

This is bigger than the total passenger list (891).
But makes sense as we have double counted some females with Age=NaN in our logic.

Women and children first!

women_and_children[women_and_children["Survived"]==1].shape
$(254,12)$

254/354
0.7175141242937854

72\% Survival Rate for
Women \& Children

How did Thurston Howell III make out?

Another obvious question we might ask is how did the wealthier, $1^{\text {st }}$ class, passengers do versus the underclasses?

We could continue with our basic tools and separate out the various passenger classes, and perform some math to get at an answer.

However, we are now starting to ask questions that can utilize more sophisticated tools like:

- Joins (called Merges in Pandas)
- Grouping
- Pivot tables

Pandas has these capabilities. However, more complex data manipulation like this can often benefit from the more powerful capabilities of a Structured Query Language (SQL) database. Certainly at scale.

So we will preview the power of these operations with one last look at this problem, and then we will move on to SQL.

After you have learned SQL, you will easily be able to employ these operations in Pandas when you wish.

Grouping

```
Grouping typically performs 3 steps:
    - Splits the data into groups base on some criteria: Pclass
    o Applies a function to each group separately:
    o Combine the results into a new table
That is one way to get directly at our answer. It becomes this simple:
titanic[['Pclass', 'Survived']].groupby('Pclass').mean()
Pclass Survived
1 0.629630
2 0.472826
3 0.242363
```


SQL

Big Data

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate.
—Wikipedia

Once there was only small data...

Find a tasty appetizer - Easy!

Find something to use up these oranges - grumble...

What if....

Less sophisticated is sometimes better...

Get all articles from 2007.

Get all papers on "fault tolerance"

- grumble and cough
"Chronologically" or "geologically" organized. Familiar to some of you at tax time.

Indexing will determine your individual performance. Teamwork can scale that up.

The culmination of centuries...

Find books on Modern Physics (DD\# 539)
Find books by Wheeler
where he isn't the first author - grumble...

Your only hope...

Then data started to grow.

But still pricey. \$

Better think about what you want to save.

And finally got BIG.

A better sense of biggish

Size

- 1000 Genomes Project
- AWS hosted
- 260TB
- Common Crawl
- Hosted on Bridges
- 300-800TB+

3 V's of Big Data

- Volume
- Velocity
- Variety
- Building now
- Exabyte of raw data/day - compressed to 10PB
- Internet of Things (IoT) / motes
- Endless streaming

Records

- GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)
- Only about 2.5TB per year, but..
- 250M rows and 59 fields (BigTable)
- "during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with increases in volume in order to ensure that translation always finishes within the 15 minute window.... and prioritizes the highest quality material, accepting that lower-quality material may have a lower-quality translation to stay within the available time window."

Good Ol' SQL couldn't keep up.

```
SELECT NAME, NUMBER, FROM PHONEBOOK
```

Why it wasn't fashionable:

- Schemas set in stone:
- Need to define before we can add data
- Not a fit for agile development

"What do you mean we didn't plan to keep logs of everyone's heartbeat?"
- Queries often require accessing multiple indexes and joining and sorting multiple tables
- Sharding isn't trivial
- Caching is tough
- ACID (Atomicity,Consistency,Isolation,Durability) in a transaction is costly.

So we gave up: Key-Value

Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo

- Certainly agile (no schema)
- Certainly scalable (linear in most ways: hardware, storage, cost)
- Good hash might deliver fast lookup
- Sharding, backup, etc. could be simple
- Often used for "session" information: online games, shopping carts

```
GET cart:joe:15~4~7~0723
```


How does a pile of unorganized data solve our problems?

Sure, giving up ACID buys us a lot performance, but doesn't our crude organization cost us something? Yes, but remember these guys?

This is what they look like today.

Document

foo	䇣
2	
6	JSON
9	XMI
0	Binary JSON
bar	JSON XML
12	XML XML

Wide Column Stores


```
SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);
```

- No predefined schema
- Can think of this as a 2-D key-value store: the value may be a key-value store itself
- Different databases aggregate data differently on disk with different optimizations

Key			
Joe	Email: joe@gmail	Web: www.joe.com	
Fred	Phone: 412-555-3412	Email: fred @yahoo.com	Address: 200 S. Main Street
Julia	Email: julia@apple.com		
Mac	Phone: 214-555-5847		

Graph

Neo4j Titan, GEMS

- Great for semantic web
- Great for graphs \square
- Can be hard to visualize
- Serialization can be difficult
- Queries more complicated

From PDX Graph Meetup

Queries
 SPARQL, Cypher

- Uses Resource Description Framework format

- triple store
- RDF Limitations
- No named graphs

Cypher (Neo4J only)

- No quantifiers or general statements
- "Every page was created by some author"
- "Cats meow"
- Requires a schema or ontology (RDFS) to define rules
- "The object of 'homepage' must be a Document."
- No longer proprietary
- Stores whole graph, not just triples
- Allows for named graphs
- ...and general Property Graphs (edges
and nodes may have values)
- "Link from an actor to a movie must connect an object of type Person to an object of type Movie."

SMATCH (Jack:Person
\{ name:'Jack Nicolson'\})-[:ACTED_IN]-(movie:Movie) RETURN movie

```
?person a foaf:Person.
    ?person foaf:name ?name.
    ?person foaf:mbox ?email
```


Graph Databases

- These are not curiosities, but are behind some of the most high-profile pieces of Web infrastructure.
- They are definitely big data.

Microsoft Bing Knowledge Graph	Search and conversations.	~ 2 billion primary entries ~ 55 billion facts				
Facebook		~ 50 million primary entries				
~ 500 million assertions			$	$	~ 1	
:---	:---					
Google Knowledge Graph	Search and conversations.					
LinkedIn graph	~ 55 billion facts					
590 million members						
30 million companies						

Hadoop \& Spark

What kind
of databases
are they?

Frameworks for Data

These are both frameworks for distributing and retrieving data. Hadoop is focused on disk based data and a basic map-reduce scheme, and Spark evolves that in several directions that we will get in to. Both can accommodate multiple types of databases and achieve their performance gains by using parallel workers.

The mother of Hadoop was necessity. It is trendy to ridicule its primitive design, but it was the first step.

Spark

Spark Capabilities

(i.e. Hadoop shortcomings)

- Performance
- First, use RAM
- Also, be smarter
- Ease of Use
- Python, Scala, Java first class citizens
- New Paradigms

But using Hadoop as the backing store is a common and sensible option.

- SparkSQL
- Streaming
- MLib
- GraphX
- ...more

Same Idea (improved)

Spark Formula

1. Create/Load RDD

Webpage visitor IP address log
2. Transform RDD
"Filter out all non-U.S. IPs"
3. But don't do anything yet!

Wait until data is actually needed
Maybe apply more transforms ("Distinct IPs")
4. Perform Actions that return data

Count "How many unique U.S. visitors?"

Simple Example

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our pyspark shell provides us with a convenient $s c$, using the local filesystem, to start. Your standalone programs will have to specify one:
from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)
You would typically run these scripts like so:
spark-submit Test_App.py

Simple Example

```
>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")
>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)
>>> HubbleLines_rdd.count()
47
>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/61-c/Hubble.gif'
```

Read into RDD

Lambdas

We'll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine. Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if "given an input variable line, is "stanford" in there?", it isn't worth the digression.

Most modern languages have adopted this nicety.

Common Transformations

Transformation	Result	
map(func)	Return a new RDD by passing each element through func.	Same Size
filter(func)	Return a new RDD by selecting the elements for which func returns true.	Fewer Elements
flatMap(func)	func can return multiple items, and generate a sequence, allowing us to "flatten" nested entries (JSON) into a list.	More Elements
distinct()	Return an RDD with only distinct entries.	
sample(...)	Various options to create a subset of the RDD.	
union(RDD)	Return a union of the RDDs.	
intersection(RDD)	Return an intersection of the RDDs.	
subtract(RDD)	Remove argument RDD from other.	
cartesian(RDD)	Cartesian product of the RDDs.	
parallelize(list)	Create an RDD from this (Python) list (using a spark context).	

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html\#pyspark.RDD

Common Actions

Action	Result
collect()	Return all the elements from the RDD.
count()	Number of elements in RDD.
countByValue()	List of times each value occurs in the RDD.
reduce(func)	Aggregate the elements of the RDD by providing a function which combines any two into one (sum, min, max, ...).
first(), take(n)	Return the n hirst, or first n elements. valued elements of the RDDs.
top(n)	Various options to return a subset of the RDD..
takeSample(...)	Write the elements as a text file.
saveAsTextFile(path)	Run the func on each element. Used for side-effects (updating accumulator variables) or interacting with external systems.
foreach(func)	

Transformations vs. Actions

Transformations go from one RDD to another ${ }^{1}$.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and clever algorithms to minimize communication and parallelize the processing. You want to keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled down (collect), or along the way to "peek" at the process (count, take).

Pair RDDs

- Key/Value organization is a simple, but often very efficient schema, as we mentioned in our NoSQL discussion.
- Spark provides special operations on RDDs that contain key/value pairs. They are similar to the general ones that we have seen.
- On the language (Python, Scala, Java) side key/values are simply tuples. If you have an RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you can use the key/value operations that follow.

Pair RDD Transformations

Transformation	Result
reduceByKey(func)	Reduce values using func, but on a key by key basis. That is, combine values with the same key.
groupByKey()	Combine values with same key. Each key ends up with a list.
sortByKey()	Return an RDD sorted by key.
mapValues(func)	Use func to change values, but not key.
keys()	Return an RDD of only values.
values()	

Note that all of the regular transformations are available as well.

Pair RDD Actions

As with transformations, all of the regular actions are available to Pair RDDs, and there are some additional ones that can take advantage of key/value structure.

Action	Result
countByKey()	Count the number of elements for each key.
lookup(key)	Return all the values for this key.

Two Pair RDD Transformations

Transformation	Result
subtractByKey(otherRDD)	Remove elements with a key present in other RDD.
join(otherRDD)	Inner join: Return an RDD containing all pairs of elements with matching keys in self and other. Each pair of elements will be returned as a (k, ($\mathrm{v} 1, \mathrm{v} 2$)) tuple, where (k, v1) is in self and (k, v2) is in other.
leftOuterJoin(otherRDD)	For each element (k, v) in self, the resulting RDD will either contain all pairs (k, (v, w)) for w in other, or the pair (k, (v, None)) if no elements in other have key k.
rightOuterJoin(otherRDD)	For each element (k, w) in other, the resulting RDD will either contain all pairs ($k,(v, w)$) for v in this, or the pair (k, (None, w)) if no elements in self have key k.
cogroup(otherRDD)	Group data from both RDDs by key.

Joins Are Quite Useful

Any database designer can tell you how common ioins are. Let's look at a simple example. We have (here we create it) an RD And an RDD with all of our customers' addr

To create a mailing list of special coupons fo join on the two datasets.

If you are coming from a Pandas DataFrame background, joins are congruent with the Merge functions. If you've used them, you may have noticed that they can take some time with even small datasets. They do not scale well.

```
>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice", "$2000"), ("Bob", "$1200")])
>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 State St."), ("Frank", "555 Timer Lane"), ("Sal1y", "44
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 West Oak")])
>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)
>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 West Oak')), ('Joe', ('$103', '23 State St.')), ('Alice', ('$2000', '3 Elm Road'))]
```


Shakespeare, a Data Analytics Favorite

Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of his authorship (it wasn't Marlowe) or if Othello is actually a comedy (perhaps), or which word makes Macbeth so creepy ("the", yes) it is amazing how much publishable research has sprung from the recent analysis of 400 year old text.

We're going to do some exercises here using a text file containing all of his works.

Some Simple Problems

We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html\#pyspark.RDD in a browser window.

If you are starting from scratch on the login node:

1) interact 2) cd BigData/Shakespeare 3) module load spark 4) pyspark
>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let's try a few simple exercises.

1) Count the number of lines
2) Count the number of words (hint: Python "split" is a workhorse)
3) Count unique words
4) Count the occurrence of each word
5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is to think "key/value". If you go that way, think about which data should be the key and don't be afraid to swap it about with value. This is a very common manipulation when dealing with key/value organized data.

Some Simple Answers

```
>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
```

>>>

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:
(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of')...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python unsorted dictionary of results:
... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1, 'poet.': 2, 'Toad!': 1, '1eaden': 15, 'captains': 1, '1eaf': 9, 'Barnes,': 1, '1ead': 101, 'He11': 1, 'wheat,': 3, '1ean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, '1eas': 2, '1eap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG data, we want to remain as an RDD until we reach our final results. So, no.

Some Harder Answers

>>> \>> 1ines_rdd.count()
124787
>>>
>>> words_rdd = 7ines_rdd.flatMap (7ambda }
>>> words_rdd.count()
904061
words_rdd.distinct().count()
6 7 7 7 9
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>>
>>> flipped_rdd = word_counts_rdd.map(7ambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>>
>>> results_rdd = flipped_rdd.sortByKey(Fa1se)
>>> results_rdd.take(5)
[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>>

```

\section*{Things data scientists do.}
```

```
>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
```

```
```

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")

```
```

>>
>>>

```

Here are a couple code clues that you are not working with Spark, but probably against it.
```

 for loops, collect in middle of analysis, large data structures
 intermediate_results = data_rdd.col1ect()
python_data = []
for datapoint in intermediate_results:
python_data.append(modify_datapoint(datapoint))
next_rdd = sc.parallelize(python_data)

```

Ask yourself, "would this work with billions of elements?". And likely anything you are doing with a for is something that Spark will gladly parallelize for you, if you let it.

\section*{Some Homework Problems}

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you could do to get a more meaningful distinct word count.
1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are familiar with regular expressions, Python has a ready method to use those.
2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a convenient StopWordsRemover() method with default lists for various languages.
3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:
```

import n7tk
from nltk.stem.porter import *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map(1ambda x: stemmer.stem(x))

```

\section*{Who needs this Spark stuff?}

As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.



\section*{Optimizations}

We said one of the advantages of Spark is that we can control things for better performance. There are a multitude of optimization, performance, tuning and programmatic features to enable better control. We quickly look at a few of the most important.
- Persistence
- Partitioning
- Parallel Programming Capabilities
- Performance and Debugging Tools

\section*{Persistence}
- Lazy evaluation implies by default that all the RDD dependencies will be computed when we call an action on that RDD.
- If we intend to use that data multiple times (say we are filtering some log, then dumping the results, but we will analyze it further) we can tell Spark to persist the data.
- We can specify different levels of persistence: MEMORY_ONLY, MEMORY_ONLY_SER, MEMORY_AND_DISK, MEMORY_AND_DISK_SER, DISK_ONLY
```

>>> lines_rdd = sc.textFile("nasa_19950801.tsv")
>>> stanfordLines_rdd = lines.filter(lambda line: "stanford" in line)
>>> stanfordLines_rdd.persist(StorageLeve1.MEMORY_AND_DISK)
>>> stanfordLines_rdd.count()
4 7
>>> stanfordLines_rdd.first(1)
['g7im.stanford.edu\t-\t807258394\tGET\t/shutt7e/../orbiters-7ogo.gif\t200\t1932\t\t']
.
.
>>> stanfordLines.unpersist()

```


Do before first action.

Actions

Otherwise will just get evicted when out of memory (which is fine).

\section*{Partitions}
- Spark distributes the data of your RDDs across its resources. It tries to do some obvious things.
- With key/value pairs we can help keep that data grouped efficiently.
- We can create custom partitioners that beat the default (which is probably a hash or maybe range).
- Use persist() if you have partitioned your data in some smart way. Otherwise it will keep getting re-partitioned.

\section*{Parallel Programming Features}

Spark has several parallel programming features that make it easier and more efficient to do operations in parallel in a more explicit way.
Accumulators are variables that allow many copies of a variable to exist on the separate worker nodes.

It is also possible to have replicated data that we would like all the workers to have access to. Perhaps a lookup table of IP addresses to country codes so that each worker can transform or filter on such information. Maybe we want to exclude all non-US IP entries in our logs. You might think of ways you could do this just by passing variables, but they would likely be expensive in actual operation (usually requiring multiple sends). The solution in Spark is to send an (immutable, read only) broadcast variable

\section*{Accumulators}
```

log = sc.textFile("logs")
blanks = sc.accumlator(0)

```
def tokenizeLog(line)
    global blanks \# write-on7y variable
    if (line =="")
                blanks += 1
    return line.split(" ")
entries = log.flatMap(tokenizeLog)
entries.saveAsTextFile("parsedlogs.txt")
print "Blank entries: \%d" blanks.value

\section*{Broadcast Variables}
```

log = sc.textFile("log.txt")
IPtable = sc.broadcast(loadIPTable())
def countryFilter(IPentry, IPtable)
return (IPentry.prefix() in IPTable)
USentries = log.filter(countryFilter)

```

\section*{Performance \& Debugging}

We will give unfortunately short shrift to performance and debugging, which are both important. Mostly, this is because they are very configuration and application dependent.

Here are a few things to at least be aware of:
- SparkConf() class. A lot of options can be tweaked here.
- Spark Web UI. A very friendly way to explore all of these issues.

\section*{IO Formats}

Spark has an impressive, and growing, list of input/output formats it supports. Some important ones:
- Text
- CSV
- SQL type Query/Load
- JSON (can infer schema)
- Parquet
- Hive
- XML
- Sequence (Hadoopy key/value)
- Databases: JDBC, Cassandra, HBase, MongoDB, etc.
- Compression (gzip...)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...

\section*{Spark Streaming}

Spark addresses the need for streaming processing of data with a API that divides the data into batches, which are then processed as RDDs.

There are features to enable:
- Fast recovery from
- Load balancing
- Integration with sta
- Integration with oth
\(15 \%\) of the "global datasphere"
(quantification of the amount of data
created, captured, and replicated across
the world) is currently real-time. That
number is growing quickly both in
absolute terms and as a percentage.

\section*{A Few Words About DataFrames}

As mentioned earlier, an appreciation for having some defined structure to your data has come back into vogue. For one, because it simply makes sense and naturally emerges in many applications. Often even more importantly, it can greatly aid optimization, especially with the Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame based. This is simply SQL type columns. Very similar to Python pandas DataFrames (but based on RDDs, so not exactly).

We haven't prioritized them here because they aren't necessary, and require a little more code to line up the types properly. But some of the latest features use them.

And while they would just complicate our basic examples, they are often simpler for real research problems. So don't shy away from using them.

\section*{Creating DataFrames}

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.
A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.
```

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","E1m P1.","ND",45698)])
>>>
>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name| street|state| zipl
+-----+--------+-----+-----+
| Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm PT.| ND|45698|
+-----+--------+-----+-----+

```

\section*{Creating DataFrames}

You will come across DataFrames created without a schema. They get default column names.
```

>>> noSchemaDataFrame = spark.createDataFrame(row_rdd)
>>> noSchemaDataFrame.show()
+-----+--------+---+-----+
| _1| _2| _3| _4|
+-----+--------+---+-----+
Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm P1.| ND|45698|

```

\section*{Datasets}

Spark has added a variation (technically a superset) of DataFrames called Datasets. For compiled languages with strong typing (Java and Scala) these provide static typing and can detect some errors at compile time.

This is not relevant to Python or R.

And you can create them inline as well.
```

>>> directDataFrame = spark.createDataFrame([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","E1m P1.","ND",45698)],
["name", "street", "state", "zip"])

```

\section*{Just Spark DataFrames making life easier...}

Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json



```

>>> df = spark.read.json("zipcodes.json")
>>> df.printSchema()
root
|-- City: string (nul1able = true)
-- Country: string (nullable = true)
|-- Decommisioned: boolean (nullable = true)
-- EstimatedPopulation: long (nul1able = true)
-- Lat: double (nul1able = true)
-- Location: string (nullable = true)
-- LocationText: string (nullable = true)
-- LocationType: string (nullable = true)
-- Long: double (nul1able = true)
-- Notes: string (nullable = true)
-- RecordNumber: 1ong (nul1able = true)
-- State: string (nullable = true)
-- TaxReturnsFiled: 1ong (nul1able = true)
-- Totalwages: long (nullable = true)
-- WorldRegion: string (nullable = true)
-- Xaxis: double (nullable = true)
-- Yaxis: double (nullable = true)
-- Zaxis: double (nul1able = true)
-- ZipCodeType: string (nul1able = true)
|-- Zipcode: long (nullable = true)

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{City | Country | Decommi sioned |} & lation| Lat| & Location \\
\hline PARC PARQUE| & US | & false| & nu17|17.96| & NA-US-PR-PARC PARQUE \\
\hline |PASEO COSTA DEL SUR| & US | & false| & nu71|17.96| & NA-US-PR-PASEO CO. \\
\hline BDA SAN LUIS| & US | & false| & nu17|18.14| & NA-US-PR-BDA SAN \\
\hline CINGULAR WIRELESS| & US | & false & nu77|32.72| & NA-US-TX-CINGULAR \\
\hline FORT WORTH| & US & false & 4053|32.75| & NA-US-TX-FORT WORTH \\
\hline FT WORTH| & US \({ }^{\text {| }}\) & false & 4053|32.75| & NA-US-TX-FT WORTH \\
\hline URB EUGENE RICE| & US | & false & nu17|17.96| & NA-US-PR-URB EUGE. \\
\hline MESA & US & false & 26883|33.37| & NA-US-AZ-MESA \\
\hline MESA & US | & false & 25446|33.38| & NA-US-AZ-MESA \\
\hline HILLIARD | & US | & false| & 7443|30.69| & NA-US-FL-HILLIARD \\
\hline HOLDER| & US & false & nu17|28.96| & NA-US-FL-HOLDER \\
\hline HOLT | & US | & false & 2190|30.72| & NA-US-FL-HOLT \\
\hline HOMOSASSA| & US | & false| & nu77|28.78| & NA-US-FL-HOMOSASSA \\
\hline BDA SAN LUIS| & US & false & nu71|18.14| & NA-US-PR-BDA SAN \\
\hline SECT LANAUSSE| & US & false| & nu71|17.96| & NA-US-PR-SECT LAN. \\
\hline SPRING GARDEN| & US & false & nu17|33.97| & NA-US-AL-SPRING G... \\
\hline SPRINGVILLE & US | & false| & 7845|33.77| & NA-US-AL-SPRINGVILLE \\
\hline SPRUCE PINE| & US | & false| & 1209|34.37| & NA-US-AL-SPRUCE PINE \\
\hline ASH HILL| & US & false & 1666| \(36.4 \mid\) & NA-US-NC-ASH HILL \\
\hline ASHEBORO | & US & false| & 15228|35.71| & NA-US-NC-ASHEBORO \\
\hline
\end{tabular}

\section*{And Sometime DataFrames Are Limiting}

DataFrames are not as flexible as plain RDDs, and it isn't uncommon to find yourself fighting to do something that would be simple with a map, for example. In that case, don't hesitate to flip back into a plain RDD.
```

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","Elm P1.","ND",45698)])
>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])
>>> another_row_rdd = aDataFrameFromRDD.rdd

```

Notice that this is not even a method, it is just a property. This is a clue that behind the scenes we are always working with RDDs.

A minor technicality here is that the returned object is actually a "Row" type. You may not care. If you want it be the original tuple type then
>>> tuple_rdd = aDataFrameFromRDD.rdd.map(tuple)
Note that when our map function is a function that already exists, there is no need for a lambda.

\section*{Speaking of pandas, or SciPy, or...}

Some of you may have experience with the many Python libraries that accomplish some of these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:
- every RDD could be many TB in size
- every transform could use many thousands of cores and TB of memory
- every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You are learning how to cope with Big Data.

\section*{Other Scalable Alternatives: Dask}

Of the many alternatives to play with data on your laptop, there are only a few that aspire to scale up to big data. The only one, besides Spark, that seems to have any traction is Dask.

It attempts to retain more of the "laptop feel" of your toy codes, making for an easier port. The tradeoff is that the scalability is a lot more mysterious. If it doesn't work - or someone hasn't scaled the piece you need - your options are limited.

At this time, I'd say it is riskier, but academic projects can often entertain more risk than industry.

Numpy like operations
import dask.array as da
a = da.random.random(size=(10000, 10000),
chunks \(=(1000,1000)\) )
a + a.T - a.mean(axis=0)

Dataframes implement Pandas
import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*.csv')
df.groupby(df.account_id).balance.sum()

Pieces of Scikit-Learn
from dask_m1.1inear_mode1 import
LogisticRegression
1r = LogisticRegression()
1r.fit(train, test)

\section*{Run My Programs Or Yours}
```

exec()

```
[urbanic@r001 ~]\$ pyspark
Python 3.7.4 (default, Aug 13 2019, 20:35:49)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel (newLevel). For Sparkr, use setLogLeve1 (newLeve1).
Welcome to


Using Python version 3.7.4 (default, Aug 132019 20:35:49)
SparkSession available as 'spark'
In [1]: exec(open("./c1ustering.py").read())
\(15.76807041184 \mathrm{e}+14\)
\(23.73234816206 \mathrm{e}+14\)
\(32.13508993715 \mathrm{e}+14\)
4 1.38250712993e+14
\(51.2632806251 \mathrm{e}+14\)
\(67.97690150116 \mathrm{e}+13\)
\(77.14156965883 \mathrm{e}+13\)
\(85.7815194802 \mathrm{e}+13\)
...
. \(\cdot\)

If you have another session window open on bridge's login node, you can edit this file, save it while you remain in the editor, and then run it again in the python shell window with exec(...).

You do not need this second session to be on a compute node. Do not start another interactive session.

\section*{Machine Learning}

\section*{Using MLlib}

One of the reasons we use spark is for easy access to powerful data analysis tools. The MLlib library gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above implementations.

There are good example documents for the clustering routine we are using, as well as alternative clustering algorithms, here:
http://spark.apache.org/docs/latest/mllib-clustering.html

I suggest you use these pages for your Spark work.

\section*{Clustering}

Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine learning objectives, sometimes as one part of a pipeline.

\section*{Coin Sorting}


\section*{Clustering}

As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.


We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let's fire up pyspark and get to it...


Using Python version SparkContext availat >>>
>>> rdd1 = sc.textF >>>
>>> rdd2 = rdd1.map >>> rdd3 \(=\) rdd2.map >>>
br06\% interact
r288\%
r288\% module load spark r288\% pyspark

Make sure you are in the directory with the data file. Otherwise, Spark is dangerously quiet when you textFile() a file that does not exist. It is "lazy" and you won't find out that you have missing data until a later error.

\section*{Finding Our Way}
```

>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[''664159 550946', ' 665845 557965', ' 597173 575538',', 618600 551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[['664159', '550946'], ['665845', '557965'], ['597173', '575538'], ['618600', '551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

```

\section*{Finding Clusters}


Using Python version 2.7.5 (default, Nov 202015 02:00:19) SparkContext available as sc, HiveContext available as sqlContext. >>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(1ambda x:x.sp1it())
    rdd3 \(=\) rdd2.map(1ambda \(x:[i n t(x[0]), \operatorname{int}(x[1])])\)
>>>
>>>
from pyspark.m11ib.clustering import KMeans

コ
Read into RDD
7 Transform
7
Import Kmeans
```

class pyspark.mllib.clustering.KMeans
New in version 0.9.0
classmethod train(rdd, k, maxlterations=100, runs=1, initializationMode='k-means||', seed=None, initializationSteps=5, epsilon=0.0001, initia/Model=None) |
Train a k-means clustering model.
Parameters: . rdd - Training points as an RDD of Vector or convertible sequence types.
k - Number of clusters to create.
- maxiterations - Maximum number of iterations allowed. (default: 100)
- runs - This param has no effect since Spark 2.0.0
- initializationMode - The initialization algorithm. This can be either "random" or "k-means||". (default: "k-means||")
- seed - Random seed value for cluster initialization. Set as None to generate seed based on system time. (default: None)
- initializationsteps - Number of steps for the k-means|| initialization mode. This is an advanced setting - the default of 5 is almost always enough. (default: 5)
- epsilon - Distance threshold within which a center will be considered to have converged. If all centers move less than this Euclidean distance, iterations are stopped. (default: 1e-4
- initialModel - Initial cluster centers can be provided as a KMeansModel object rather than using the random or k-means|| initializationModel. (defaul:. None)

```

Finding Clusters


\section*{Finding Clusters}


Using Python version 2.7.5 (default, Nov 202015 02:00:19) SparkContext available as sc, HiveContext available as sqlContext. >>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(1ambda x:x.sp1it())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>> for clusters in range \((1,30)\) :
        mode1 = KMeans.train(rdd3, clusters)
        print (clusters, model.computeCost(rdd3))
\(15.76807041184 \mathrm{e}+14\)
\(23.43183673951 \mathrm{e}+14\)
\(32.23097486536 \mathrm{e}+14\)
\(41.64792608443 \mathrm{e}+14\)
\(51.19410028576 \mathrm{e}+14\)
\(67.97690150116 \mathrm{e}+13\)
\(77.16451594344 \mathrm{e}+13\)
\(84.81469246295 \mathrm{e}+13\)
\(94.23762700793 \mathrm{e}+13\)
\(103.65230706654 \mathrm{e}+13\)
\(113.16991867996 \mathrm{e}+13\)
\(122.94369408304 \mathrm{e}+13\)
\(132.04031903147 \mathrm{e}+13\)
\(141.37018893034 \mathrm{e}+13\)
\(158.91761561687 \mathrm{e}+12\)
\(161.31833652006 \mathrm{e}+13\)
\(171.39010717893 \mathrm{e}+13\)
\(188.22806178508 \mathrm{e}+12\)
\(198.22513516563 \mathrm{e}+12\)
\(207.79359299283 \mathrm{e}+12\)
\(217.79615059172 \mathrm{e}+12\)
\(227.70001662709 \mathrm{e}+12\)
\(237.24231610447 \mathrm{e}+12\)
\(247.21990743993 e+12\)
\(257.09395133944 \mathrm{e}+12\)
\(266.92577789424 \mathrm{e}+12\)
\(276.53939015776 \mathrm{e}+12\)
\(286.57782690833 \mathrm{e}+12\)
\(296.37192522244 \mathrm{e}+12\)
```

>>> for trials in range(10):
... print
... for clusters in range(12,18):
... mode1 = KMeans.train(rdd3,clusters)
... print (clusters, mode1.computeCost(rdd3))

```
\(122.31466520037 \mathrm{e}+13\)
\(131.91856542103 \mathrm{e}+13\)
\(141.49332023312 \mathrm{e}+13\)
\(151.3506302755 \mathrm{e}+13\)
\(168.7757678836 \mathrm{e}+12\)
\(171.60075548613 \mathrm{e}+13\)
\(122.5187054064 \mathrm{e}+13\)
\(131.83498739266 \mathrm{e}+13\)
\(141.96076943156 \mathrm{e}+13\)
\(151.41725666214 \mathrm{e}+13\)
\(161.41986217172 \mathrm{e}+13\)
\(178.46755159547 \mathrm{e}+12\)
\(122.38234539188 \mathrm{e}+13\)
\(131.85101922046 \mathrm{e}+13\)
\(141.91732620477 \mathrm{e}+13\)
\(158.91769396968 \mathrm{e}+12\)
\(168.64876051004 \mathrm{e}+12\)
\(178.54677681587 \mathrm{e}+12\)
\(122.5187054064 \mathrm{e}+13\)
\(132.04031903147 \mathrm{e}+13\)
\(141.95213876047 \mathrm{e}+13\)
\(151.93000628589 \mathrm{e}+13\)
\(162.07670831868 \mathrm{e}+13\)
\(178.47797102908 \mathrm{e}+12\)
\(122.39830397362 \mathrm{e}+13\)
\(132.00248378195 \mathrm{e}+13\)
\(141.34867337672 \mathrm{e}+13\)
\(152.09299321238 \mathrm{e}+13\)
\(161.32266735736 \mathrm{e}+13\)
\(178.50857884943 \mathrm{e}+12\)

\section*{Find the Centers}
```

>>> for trials in range(10):
... for clusters in range(12, 16):
mode1 = KMeans.train(rdd3, clusters)
cost = mode1.computeCost(rdd3)
centers = mode1.clusterCenters
if cost<1e+13:
print (clusters, cost)
for coords in centers:
print (int(coords[0]), int(coords[1]))
break

```
    \#Try ten times to find best result
    \#Only look in interesting range
    \#Let's grab cluster centers
    \#If result is good, print it out
\(158.91761561687 \mathrm{e}+12\) 852058157685 606574574455 320602161521
139395558143 858947546259 337264562123
244654847642
398870404924
670929862765
823421731145
507818175610
801616321123
617926399415
417799787001
167856347812
\(15 \quad 8.91765957989 \mathrm{e}+12\) 670929862765
139395558143
244654847642
852058157685
617601399504
801616321123
507818175610
337264562123
858947546259
823421731145
606574574455
167856347812
398555404855
417799787001
320602161521

Fit?



\section*{We are closer to leading edge science than you might think.}


The LIGO gravitational wave detector was able to confirm the collision of two neutron stars with both a gamma ray satellite and optical and other electromagnetic spectrum telescopes. For these transient events, it requires rapid real-time signal analysis to steer other instruments to the proper celestial coordinates. The 2 second gamma-ray burst was detected 1.7 seconds after the GW merger signal. 70 observatories were able to mine signatures in the following days. Even so, the refined location alert took a long time, and much improvement lies ahead.


This rapid processing requirement will only become more extreme as the Square Kilometer Array comes fully on-line. It will generate over an Exabyte of data a day. It will require extreme real-time processing to classify and compress this data down to an archivable size.

\section*{Strange, repeating radio signal near the center of the Milky Way has scientists stumped}

This article (www.livescience.com/strange-radio-source-milky-way-center) is the summary of the paper (arxiv.org/pdf/2109.00652.pdf) that looks an awful lot like what we are doing.


In April 2020, astronomers picked up some bursts of activity, in the X-ray band of the spectrum, a "run-of-the-mill" magnetar. But the team found that, shortly after the magnetar burst in the X-ray band, CHIME picked up two sharp staccato peaks in the radio band, within several milliseconds of each other, signaling a fast radio burst. The researchers were able to track the radio bursts to a point in the sky that was within a fraction of a degree of SGR 1935+2154 - the same magnetar that was blasting out X -rays around the same time. The team used calibration data from other astrophysical sources to estimate the magnetar's brightness. They calculated that the magnetar, in the fraction of a second that the FRB flashed, was 3,000 times brighter than any other magnetar radio signal that has yet been observed. Happening in our own galaxy, thousands of times brighter than any other pulse we've ever seen.

\section*{Assignment: Using Spark to mine astro signals}

Q: Can you find the repeating cosmological signal (pulsar?) in the captured data?

In ~urbanic/Advanced_Computational_Physics/Spark/pulsar.dat on Bridges you will find the data with a series of signals stored as:
ascension (degrees), declination (degrees), time (seconds), frequency (MHz)

These are radiofrequency signals captured by an array of instruments scanning a solid angle of the sky.

The data is, like almost all real data, a little noisy and has sources of errors. In our case the angular coordinates have 0.1 degrees error, the signal frequency has 0.1 MHZ error and the timebase/period error is \(<0.01\) s (that is one STD or standard deviation).

Your job is to find the most regular temporarily repeating RF source.


Your target will be found in the same location (within error) of the sky, on the same frequency (within error) chirping for the most blips, regularly spaced in time during that active period. So...
.blip...blip...blip...blip...blip...blip.

Again, you are looking for the signal with the most blips.


For a normal or gaussian distribution, the standard deviation indicates the region where about \(2 / 3\) of the points will fall. And for small sample sizes, this may be noisy.

How to approach an algorithmic problem...


Think about how you, without a computer, would attempt a tiny version of the problem. Once you think about how you would do it, a algorithm often becomes clear. If you can't think about how you would do it, writing lines of code isn't going to make a solution materialize.

\section*{Assignment: Using Spark to mine astro signals}

There are multiple approaches to this problem that will work. I can think of several that would be dead painful (hints in lecture). In particular, clustering is not needed! We happen to be covering this now, and it seems like an intuitively useful tool for this task, but it is not necessary at all, and I think it is much harder than other simpler methods.

Biggest Hint: I am a nice guy! While the data could have nasty surprises, it does not. Use common sense and experiment around and you will find an clear answer.

This is doable interactively. You can explore the data within PySpark using operations that are reasonably quick. You do not need to create long running scripts to get to the answer.

To recap:
1. \(\log\) on
2. cp the datafile to where you want to work with your pyspark session
3. get an interactive node
4. load the spark module
5. start a pyspark session
6. load the datafile
7. and use transforms to wring out the answer: the coordinates, the frequency and the period (rounded to integers is fine).

Use Spark commands (RDDs) to derive your answer. Yes, with a dataset this size you could use python directly, but a real dataset would be far too large. Use Spark transforms to boil down your data until you have a modest amount (screenful) of data to inspect. Use python at that point, if you wish, or just observe your answer. Ask if you don't understand this point. You could lose credit otherwise.

Submit your answer along with the exact sequence of spark commands that got you there. This means a single email. An attachment of the commands with your answer in the body of the mail, and any explanation you care to provide, is the required format.

\section*{Dimensionality Reduction}

We are going to find a recurring theme throughout machine learning:
- Our data naturally resides in higher dimensions
- Reducing the dimensionality makes the problem more tractable
- And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed representation.

As we return to this theme, we will highlight these slides with our Dimensionality Reduction badge so that you can follow this thread and appreciate how fundamental it is.


\section*{Why all these dimensions?}

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.
\begin{tabular}{|l|l|}
\hline Category & Purchase Total (\$) \\
\hline Children's Clothing & \(\$ 800\) \\
\hline Pet Supplies & \(\$ 0\) \\
\hline Cameras (Dash, Security, Baby) & \(\$ 450\) \\
\hline Containers (Storage) & \(\$ 350\) \\
\hline Romance Book & \(\$ 0\) \\
\hline Remodeling Books & \(\$ 80\) \\
\hline Sporting Goods & \(\$ 25\) \\
\hline Children's Toys & \(\$ 378\) \\
\hline Power Tools & \(\$ 0\) \\
\hline Computers & \(\$ 0\) \\
\hline Garden & \(\$ 0\) \\
\hline Children's Books & \(\$ 180\) \\
\hline
\end{tabular}

This is a 2900 dimensional vector.

\section*{Why all these dimensions?}

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable error).

People spending on "child's toys " and "children's clothing" might cluster with "child's books" and, less obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the clusters at all. We can now represent any customer by their distance from these 80 clusters.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Customer Representation} & \multicolumn{4}{|c|}{80 dimensional vector.} & & \\
\hline Cluster & \begin{tabular}{l}
Young \\
Parents
\end{tabular} & College Athlete & \begin{tabular}{l}
Auto \\
Enthusiast
\end{tabular} & Knitter & Steelers Fan & Shakespeare Reader & Sci-Fi Fan & Plumber & \(\ldots\) \\
\hline Distance & 0.02 & 2.3 & 1.4 & 8.4 & 2.2 & 14.9 & 3.3 & 0.8 & \(\ldots\) \\
\hline
\end{tabular}

We have now accomplished two things:
- we have compressed our data
- learned something about our customers (who to send a dashcam promo to).

\section*{Curse of Dimensionality}

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.


These plots show the distributions of pairwise distances between randomly distributed points within differently dimensioned unit hypercubes. Notice how all the points start to be about the same distance apart.

Once can imagine this makes life harder on a clustering algorithm!

There are other surprising effects: random vectors are almost all orthogonal; the unit sphere takes almost no volume in the unit square. These cause all kinds of problems when generalizing algorithms from our lowly 3D world.

\section*{Metrics}

Even the definition of distance (the metric) can vary based upon application. If you are solving chess problems, you might find the Manhattan distance (or taxicab metric) to be most useful.


For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: \(a+b \geq c\) ).

\section*{Alternative DR: Principal Component Analysis}


Maybe mostly 1D!


Flatter 2D-ish Data Set


View down the \(1^{\text {st }}\) Princ. Comp.

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available factors. We may have an entry (vector) for each home that captures this kind of data:
\begin{tabular}{|l|l|}
\hline & \multicolumn{1}{|c|}{ Home Data } \\
\hline Latitude & 4833438 north \\
\hline Longitude & 630084 east \\
\hline Last Sale Price & \(\$ 480,000\) \\
\hline Last Sale Year & 1998 \\
\hline Width & 62 \\
\hline Depth & 40 \\
\hline FIoors & 3 \\
\hline Bedrooms & 3 \\
\hline Bathrooms & 2 \\
\hline Garage & 2 \\
\hline Yard Width & 84 \\
\hline Yard Depth & 60 \\
\hline\(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...

\section*{Principal Component Analysis Fail}


Why the fascination with linear techniques?


\section*{The Streetlight Effect}

This is a very real and powerful force throughout the sciences.

It is not because practitioners are dumb.

But, it is also very often neither explained nor justified.

Which leads to great confusion.

Why Would An Image Have 784 Dimensions?


MNIST 28x28 greyscale images


\section*{Central Hypothesis of Modern DL}


Data Lives On
A Lower Dimensional Manifold


Maybe Very Contiguous


Maybe A Small Set Of Disconnected

\section*{import numpy as np} mport matplotlib.pyplot as plt from sklearn import (datasets, decomposition, manifold, random_projection)
def \(\operatorname{draw}(X\), title)
plt.figure()
plt.xlim(x.min(0)[0],x.max(0)[0]); plt.ylim(x.min(0)[1],x.max(0)[1])
1t.xticks([]); plt.yticks([])
plt.title(title)
for \(i\) in range(x.shape[0]):
plt.text(X[i, 0], X[i, 1], \(\operatorname{str}(y[i]), \operatorname{color=p7t.cm.Set1(y[i]~/~10.)~)~}\)
digits = datasets.1oad_digits(n_class=6)
\(\mathrm{X}=\) digits.data
\(y=\) digits.target
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X)
draw(X_projected, "Sparse Random Projection of the digits")
X_pca = decomposition. PCA(n_components=2).fit_transform(X) draw(X_pca, "PCA (Two Components)")
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) X_tsne = tsne.fit_transform(X) draw(X_tsne, "t-SNE Embedding")
plt.show()


How does all this fit together?


\section*{The Journey Ahead}


As the Data Scientist wanders across the ill-defined boundary between Data Science and Machine Learning, in search of the fabled land of Artificial Intelligence, they find that the language changes from programming to a creole of linear algebra and probablity and statistics.

Clustering
Assignment Review

In this case, I might plot the points out on graph paper and see if any pattern emerges.

If this seems like a reasonable approach, I could think about how to implement this in Spark.


And if we do this with RDDs, we will naturally obtain scalability. Our helpers can all work on a small portion of the overall problem.


First Approach: Sort Coordinates Into Bins
```


Just read stuff in and round off

raw = sc.textFile('pulsar.dat')
tokens = raw.map(lambda x: x.split())
floats = tokens.map(lambda x: (float(x[0]),float(x[1]),float(x[2]),float(x[3])))
rounded = floats.map(1ambda x: (round(x[0]),round(x[1]),round(x[2]),round(x[3])))
rounded.take(5)
[(94, 108, 1766, 6310),
(68, 93, 2370, 5114),
(80, 101, 1324, 5299),
(86, 91, 1386, 4572),
(95, 77, 2000, 2841)]
keyed = rounded.map(1ambda x: (tuple([x[0],x[1]]), [[x[2],x[3]]]))
keyed.take(3)
[((94, 108), [[1766, 6310]]),
((68, 93), [[2370, 5114]]),
((80, 101), [[1324, 5299]])]
reduced = keyed.reduceByKey(1ambda x,y: x+y)
reduced.take(2)
[((94, 108), [[1766, 6310], [1768, 6310]]),
((68, 93), [[2370, 5114], [2367, 5113], [594, 3576], [3074, 1572]])]
repeats = reduced.map(1ambda x: (x[0],1en(x[1])))
repeats.take(4)
Out[14]: [((94, 108), 2), ((68, 93), 4), ((80, 101), 4), ((86, 91), 3)]

```
groupByKey() functions similarly here. It leaves you with a Spark Iterable type, which is fine but requires some further processing to see the result.

First Approach: Sort Coordinates Into Bins (contd.)


\section*{First Approach: Sort Coordinates Into Bins (contd.)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
sorted_with_data \\
sorted_with_data
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\[
[((73,100),
\]} \\
\hline \multicolumn{3}{|l|}{[[2471, 6973],} \\
\hline \multicolumn{3}{|l|}{[2590, 3717],} \\
\hline \multicolumn{3}{|l|}{[2442, 6973],} \\
\hline [2446, 6973], & & \\
\hline [2140, 6112], & ( \((101,105)\), & \\
\hline [2487, 6973], & [ [40, 3284], & Insight: 73,100 has 10 signals \\
\hline [2512, 6973], & [2841, 1419], & around 6973 MHz and 108,101 \\
\hline [2483, 6972], & [2839, 1419], &  \\
\hline [2458, 6972], & [2752, 7860], & has 11 of 1706 MHz . \\
\hline [2479, 6973], & [2651, 5529], & \\
\hline [1455, 5587], & [1604, 5641], & \\
\hline [1463, 5587], & [2901, 6707], & We should check neighboring \\
\hline [2499, 6972], & [2748, 7860], & bins for both to see if there are \\
\hline [2462, 6972]]), & [631, 3779], & bins for both to see if there are \\
\hline ( (108, 101), & [2648, 5529], & associated points there. \\
\hline [[1065, 1174], & [1596, 5641], & \\
\hline [1896, 1706], & [634, 3779]]), & \\
\hline [1934, 1706], & ( \((63,107)\), & Or, maybe we can look for the \\
\hline [1904, 1706], & [ [1614, 1258], & \\
\hline [1973, 1706], & [930, 2720], & where they are \\
\hline [1942, 1706], & [1615, 1259], & where they are. \\
\hline [1950, 1706], & [1617, 1259], & \\
\hline [1911, 1706], & [2173, 4264], & \\
\hline [1980, 1706], & [1305, 4608], & \\
\hline [1073, 1174], & [1618, 1259], & \\
\hline [1919, 1706], & [2164, 4264], & \\
\hline [1965, 1706], & [1313, 4608], & \\
\hline [1927, 1706]]), & \[
\begin{aligned}
& {[971,6670],} \\
& [935, ~ 2720]])]
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Second Approach: Let's key on frequency.}

\section*{\# Use same RDD's as prior approach to get to "rounded"}
```

freq_keys = rounded.map(lambda x: (x[3],[[x[0],x[1],x[2]]]))

```
```

reduced_freq = freq_keys.reduceByKey(1ambda x,y: x+y)
freq_sorted = reduced_freq.takeOrdered(5, key = 1ambda x: -1en(x[1]))
freq_sorted
[(5182,
[[119, 97, 3206],
[77, 78, 1623],
[119, 96, 3221],
[119, 96, 3217],
[112, 82, 583],
[84, 103, 1981],
[64, 115, 96],
[81, 100, 3551],
[119, 96, 3210],
[119, 97, 3202],
[77, 78, 1616],
[119, 96, 3213]]),
(1706,
[[108, 101, 1896],
[108, 101, 1934],
[109, 101, 1957],
[108, 101, 1904],
[108, 101, 1973],
[108, 101, 1942],
[108, 101, 1950],
[108, 101, 1911],
[108, 101, 1980],
[108, 101, 1919],
[108, 101, 1965]
[108, 101, 1927]]),

```

\section*{Both 1706 MHz and 6973 MHz} look like strong candidates. And 6973 does indeed bleed into a neighboring box.

Let's focus on just those two frequency bands.
(5402,
[ [82, 110, 1726],
[96, 92, 3137],
[82, 110, 1712]
\([82,110,1721]\),
[76, 110, 2253],
[109, 106, 1633],
[82, 110, 1717],
[82, 110, 1735],
[82, 110, 1731]
[109, 106, 1625]]),
(6973,
[[73, 100, 2471],
[73, 100, 2442],
[72, 100, 2450],
\([73,100,2446]\),
[73, 100, 2487],
[73, 100, 2512],
[72, 100, 2467],
[72, 100, 2475],
[73, 100, 2479],
[72, 100, 2508]]),
(7592,
\([[66,83,1161]\),
\([66,102,3363]\),
[90, 75, 2767],
[90, 75, 2774],
[73, 94, 3422],
[68, 109, 410],
[68, 109, 403],
[66, 83, 1169],
\([66,102,3365]])]\)

\section*{Second Approach: Let's key on frequency. (contd.)}
reduced_freq. Tookup(6973)
[[[73, 100, 2471],
[73, 100, 2442],
[72, 100, 2450],
[73, 100, 2446]
[73, 100, 2487],
73, 100, 2512]
[72, 100, 2467],
72, 100, 2475]
73, 100, 2479]
[72, 100, 2508]]]
reduced_freq.1ookup(6972)
[[[72, 100, 2491],
\([73,100,2483]\),
[73, 100, 2458],
[72, 100, 2495],
[72, 100, 2504]
[73, 100, 2499],
[72, 100, 2454]
[73, 100, 2462]]]
reduced_freq. lookup(6974)
\([[[97,78,2139],[97,78,2148]]]\)

18 correlated sources here.
```

reduced_freq.1ookup(1706)
[[[108, 101, 1896],
[108, 101, 1934],
[109, 101, 1957],
108, 101, 1904],
[108, 101, 1973],
[108, 101, 1942],
[108, 101, 1950],
[108, 101, 1911],
[108, 101, 1980],
[108, 101, 1919],
[108, 101, 1965],
[108, 101, 1927]]]

```
reduced_freq. lookup (1707)
\([[[92,67,135],[92,89,377]]]\)
reduced_freq. 1ookup (1705)
[[[94, 95, 2506]]]

\section*{Don't Panic!}

This isn't a pass/fail assignment. Maybe you didn't find the strongest source? As long as you made a considered attempt, there is plenty of credit to go around.
Hopefully, you gave me enough code/comments to let me give you as much as possible.

\section*{More Rigorous Solutions}

I gave you permission to be a little casual about locating the source. And I gave you a dataset that wasn't intentionally devious. But you can see that we could need to be more diligent about dealing with sources that get rounded or sorted in odd ways.

If we wanted to pursue the analysis techniques that I am using here, we could scale up (normalize) our dataset depending on the std, and consider more carefully what happens when a signal is on a bin boundary.

Let's use Spark to see how we can be a little more (although not completely) thorough.


\section*{Third Approach: Shifting data around before reducing.}
\# Use same RDD's as prior approach to get to the "floats" RDD.
```

def shift_bin (x):
std = 0.1
up_shift = (x[0]+std,x[1],x[2],x[3])
down_shift = (x[0]-std,x[1],x[2],x[3])
return (x,up_shift,down_shift)
freq_first = floats.map(lambda x: (x[3],x[0],x[1],x[2]))
freq_smeared = freq_first.flatMap(shift_bin)
freq_rounded = freq_smeared.map(lambda x: (round(x[0]), x[1], x[2], x[3]))
freq_rounded.take(3)
[(5079, 98.98274915340335, 80.51828454605635, 5340.876552864837),
(5079, 98.98274915340335, 80.51828454605635, 5340.876552864837),
(5079, 98.98274915340335, 80.51828454605635, 5340.876552864837)]
freq_distinct = freq_rounded.distinct() \# Dangerous to do with floats! Should really round properly first
freq_key_value = freq_distinct.map(1ambda x: (x[0], [[x[1],x[2],x[3]]]))
reduced_freq = freq_key_value.reduceByKey(1ambda x,y: x+y)
freq_sorted = reduced_freq.takeOrdered(10, key = 1ambda x: -1en(x[1]))

```

Third Approach: Shifting data around before reducing. (contd.)
```

freq_sorted
[(5182,
[[118.52976392074571, 96.54201070629634, 3206.1214714999783],
[77.45460061630328, 78.07530545083995, 1622.7858796279986],
[118.64689982756818, 96.44132078278089, 3220.7666267843792],
118.59482658216085, 96.44941929769246, 3217.1068733712573]
111.8910509747487, 82.11533278823124, 583.0978357887793],
84.28463367457108, 103.23625952005631, 1980.5177436710767],
64.22176401688995, 114.73331621175502, 96.172677256929721,
81.26205876660073, 100.49647521225083, 3550.781584237549],
118.64551263852323, 96.49666570792286, 3209.784326499607,
118.70400080192714, 96.55672285267048, 3202.462710244625],
77.34895154230571, 77.89713080431697, 1616.348257398497],
[118.56628035253055, 96.40234392252746, 3213.445682114889]]),
6973,
[[72.50191364575532, 99.92189255143647, 2470.699753412948],
[72.73381667361762, 99.83371460919332, 2442.003948596213]
72.39253672571188, 99.81561711859166, 2450.194875456176]
72.58351485796673, 99.75978902115273, 2446.099585222095],
[72.55759922126946, 100.0294214129675, 2487.100038667084],
72.57307064374842, 99.85451048898713, 2511.701509335189],
[72.51428256839976, 99.72397545952776, 2482.998216754375],
[72.34625610801322, 100.0444800094792, 2466.598744544187],
72.13653068287205, 99.87661917278416, 2474.799710524056]
72.64006627072443, 99.78935257630796, 2478.899786929185]
[72.40932961147622, 99.94220119655255, 2454.295945248991],
[72.48122227881026, 99.84273302955303, 2507.600661605101]]),
1706,
[[108.3443282919675, 100.84273369075228, 1895.8400028984754],
108.36077607279039, 100.8823430099223, 1934.2533854297046],
108.3269544645516, 100.79203616247478, 105.5232083185826],
108.3268259888308, 100.68171005697531, 1972.66840814087751,
108.27555113633017, 100.8423054725518, 1941.9362817726542],
108.2755113633017, 100.84239054725518, 1941.9362817726542],
108.3260302844537, 100.9860704129250, 1949.6191849036916],
108.41938821659426, 100.786398653622, 1980.35069628125961,
108.33984731223752,100.88363740996039, 1018.888494813312],
108.3252590645205, 100.68360280978423, 1964.084398622469],
108.31696912684708,-100.69812697807636, 1026.571082107031]1)

```
...

Third Approach: Shifting data around before reducing. (contd.)
\#take a step back and redo a few steps with rounded values. Just to make it easier to see.
freq_key_value_rounded \(=\) freq_distinct.map(lambda \(x\) : ( \(x[0], \quad[[r o u n d(x[1]), \operatorname{round}(x[2]), r o u n d(x[3])]])\) ) reduced_freq_key_value_rounded \(=\) freq_key_value_rounded. reduceByкey ( \(7 \mathrm{ambda} x, y\) : \(x+y\) )
freq_rounded_sorted \(=\) reduced_freq_key_value_rounded.takeordered (4, key = 1ambda x: -1en (x[1]))
freq_rounded_sorted freq_roun
[(5182,
\([\quad[119\),
[[119, 97, 3206]
[77, 78, 1623]
\(119,96,32217\)
\([119,96,3217]\)
\([112,82\),
\(583]\)
\begin{tabular}{l}
{\([112,82,583]\)} \\
{\([84,11\),} \\
\hline 681\(]\)
\end{tabular}
\begin{tabular}{l}
{\([84\),} \\
{\([64\),} \\
-81 \\
115, \\
100 \\
\hline 85\(]\) \\
351
\end{tabular}
\([64,11,96]\)
\([81,100\),
\([111\),
\(\left.\begin{array}{l}{[119,} \\ {[119,} \\ \hline 77, \\ 97 \\ \hline\end{array} 3210\right]\)
[119, 97, 3202],
\([77,78,1616]\),
\([119,96,3213]])\)
(6973,
\([773,100,2471]\)
\([73,100,2442]\)
\([72,100,2450\)
\(73,100,2442]\)
\(77,100,2450]\)
\(73,100,2446]\)
\([73,100,2446]\)
\(773,100,2487]\)
\(73,100,2512]\)
\([73,100,2487]\),
\([73,100,2512]\),
\([73,100,2483]\),
\(73,100,248\)
\(72,100,246\)
\begin{tabular}{l}
100,2467 \\
\hline 100,2479\(]\) \\
\hline 109
\end{tabular}
100, 2454],
\([108,101,1896\)
\([108,101,1934]\)
\([109,101,1957]\)
\([108,101,1904]\)
\([109,101,1957\)
\([108,101,1904\)
\([108,101,1973\)
\([108,101,104]\)
108, 101, 1973]
\(108,101,1942]\)
\begin{tabular}{l}
{\([108,101,1942]\),} \\
{\([108\),} \\
{\([101\),} \\
{\([108\),} \\
101 \\
\hline 1050\(]\)
\end{tabular}
\begin{tabular}{l}
\(108,101,1950]\) \\
\(108,101,1911]\) \\
108,101 \\
\hline 10801
\end{tabular}
108, 101, 1980],
108, 101, 1919],
\begin{tabular}{l}
{\([108\),} \\
{\([108\),} \\
101, \\
\(1919]\) \\
\hline
\end{tabular}
\([108,101,1965]\)
\([108,101,1927]])\),
(6972,
73, 100, 2442],
\(72,100,2491]\)
\(72,100,2491]\)
\(73,100,2483]\)
\(73,100,2483]\)
\(73,100,2458]\)
\(73,100,2479]\)
\(\begin{array}{ccc}{[73,} & 100, & 2479] \\ {[72,} & 100, & 2495] \\ 72, & 100 & 2594]\end{array}\)
\([72,100,2495]\),
\([72,100,2504]\),
\([73,100,2499]\),
\([73,100,2499]\)
\([72,100,2454]\)
\([72,100,2454]\),
\([72,100,2508]\),
\([73,100,2462] j)]\)

\title{
Third Approach: Shifting data around before reducing. (contd.)
}
\#Now that \(I\) have the answer, I'11 just do a quick python sort on the timebase to clean it up.
```

data = freq_rounded_sorted[1][1]

```
data.sort(key = 1ambda x : \(\mathrm{x}[2]\) )
data
[[73, 100, 2442],
    [73, 100, 2446],
    [72, 100, 2450],
    [72, 100, 2454],
    [72, 100, 2467],
    [73, 100, 2471],
    [72, 100, 2475],
    [73, 100, 2479],
    [73, 100, 2483],
    [73, 100, 2487],
    [72, 100, 2508],
[73, 100, 2512]]


Once again we find that coords 73,100 really do have a single source of frequency 6792 MHz . With a cycle time of \(\sim 4 \mathrm{~s}\).

Notice we are missing a few points from our other analysis. If we go back and look and the floating point values, they fell just outside our 1 STD. We could relax that in our shift function.

\section*{Creating a Reusable Solution}

We did this in an exploratory mode, which is a wonderful capability of Spark. You can play around will real datasets, not just toy problems.

However we might want to pull these ideas together and create a rigorous code. For our spatial approach, we can use the same shift technique, but now in two dimensions. If we think about the worst case scenario in which our target cluster is centered on a border, we would realize that no single shift is assured to not land on another border. We would actually need two slides just to be sure.

We could also make the (rounded) frequency part of the key to deal with distinguishing frequencies at the same time. We would also need to do a similar bin shift trick there as well.

If you are worried about how well this scales, especially as we consider we may want more boxes as our resolution goes up, realize that this technique scales proportionate to the number of sources, not the number of bins of the size of the sky.

And of course there are alternate techniques as well.


Assignment Generators
(for your eyes only)

\section*{Assignment Dataset Generators}
- We provide the tools for you to generate your own problem sets.
- This avoids cheating (to some extent).
- And allow you to choose difficulty.

Here are some example distributions. They may be simple and few:



They might even have noise:


TVI Pitisburch

\section*{Advanced \\ Data Analysis \\ Assignment Review}

The Big Reveal: What was in our data?


\section*{First dive: How many "things" are there?}
```

input_rdd = sc.textFile('Assignment2.dat').map(lambda x:x.split(',')).map(lambda x:
[float(x[0]), float(x[1]),float(x[2]),float(x[3]),float(x[4]),float(x[5])])
input_rdd.take(3)
[[57.47974084562296,
55.44945810334027,
54.241594907920344,
52.41360437021964,
54.93100799212413,
51.78432087598154],
[70.46721670551902,
71.53278329448098,
from pyspark.m1lib.clustering import KMeans
for clusters in range(1,10):
mode1 = KMeans.train(input_rdd, clusters)
print (mode1.computeCost(input_rdd))
22813322.102508288
8222110.121083168
1953379.9003032786
1345930.143051648
248637.68427582923
240944.69344685183
238758.14649268807
152969.2321060632
137938.55840308202

```
```

for clusters in range(1,10):
mode1 = KMeans.train(input_rdd, clusters)
print (mode1.computeCost(input_rdd))

```
22813322.102508288
8222110.121083168
1953379.9003032786
856087.4415274587
248637.68427582923
174234.43071089557
166391.823094679
143271.65116005158
157528.57192476804

\section*{What can we say about these five objects?}
```

mode1 = KMeans.train(input_rdd, 5)
centers = model.clusterCenters
print(centers)
[array([29.8592193 , 30.00769653, 30.02190367, 80.00416938, 79.97828141, 80.02146926]),
array([39.99730091, 39.99272142, 40.00456747, 14.99162554, 15.00305203, 15.02544602]),
array([70.99050247, 71.00221983, 71.00221983, 71.00221983, 71.00221983, 71.00221983]),
array([54.97439287, 55.02510453, 54.97981585, 54.96350913, 55.04625848, 55.00612376]),
array([23.95388832, 23.95388832, 23.95388832, 23.95388832, 23.95388832, 23.95388832])]
pred = mode1.predict(input_rdd)
clusters = input_rdd.zip(pred)
clusters.take(3)
[([57.47974084562296,
55.44945810334027,
54.241594907920344,
52.41360437021964,
54.93100799212413,
51.78432087598154],
3),
([70.46721670551902,
71.53278329448098,
71.53278329448098,
71.53278329448098,
71.53278329448098,
71.53278329448098],
2),
([54.26327405498564,
58.49493372842324,
54.75498592333371,
55.703180938852945,
52.83741473654931,
51.4028551634724],
3)]

```

\section*{PCA might te Why DataFrames?}
from pyspark.ml.feature import vectorAssembler from pyspark.m1.feature import PCA
\# For each of the labeled clusters: get a count, center cluster and do for cluster_num in range(5):
cluster = clusters.filter(1ambda x : \(\mathrm{x}[1]==\mathrm{cluster} \mathrm{\left.\_num\right).map(1ambda}\) print("Cluster ",cluster_num," has count ",cluster.count())
center = [float(x) for \(x\) in centers[cluster_num]]
centered_cluster = cluster.map(lambda \(x\) : [x[0]-center[0], \(x[1]\)-cent df = spark.createDataFrame(centered_cluster)
assembler = VectorAssembler(inputcols=['_1', '_2','_3','_4','_5', ndf \(=\) assembler.transform(df)
pca \(=\) PCA(k=6, inputCol="feat_vec", outputCol="pca_features")
mode1 = pca.fit(ndf)
print("Cluster: ",cluster_num," explainedVarience: ", mode1.expla

Many of you seem to prefer DataFrames. The DataFrame PCA offered me some useful functionality that I would have had to write myself for the RDD version of PCA, notably the explained variance.

As DataFrame APIs are picky about datatypes, I just went with the VectorAssembler helper routine to create my inputs.

We just include all our columns here, but you should know about this for when you are constructing more selective input features in your own complex applications.

Cluster 0 has count 3000 Cluster: 0 explainedVarience: Cluster 1 has count 1500 Cluster: 1 explainedVarience: Cluster 2 has count 1000
Cluster: 2 explainedvarience: Cluster 3 has count 2500 Cluster: 3 explainedVarience: Cluster 4 has count 1000 Cluster: 4 explainedVarience:
[0.669525536882, 0.1662797338236, 0.16419473782323, 2.45886121026e-16, 5.5166246758226e-17, 2.202681855118e-17]
\([0.517083515243,0.4829164846848,1.1240263947 \mathrm{e}-16,7.59536857127 \mathrm{e}-17,2.2841893262568 \mathrm{e}-17,3.756984397667 \mathrm{e}-18]\)
[ \(0.833387789374,0.1666122103404,2.4712754937 \mathrm{e}-32,1.82764934226 \mathrm{e}-63,3.0036689526738 \mathrm{e}-95,0.0]\)
[0.177078608271, \(0.1757344315469,0.17084112066742,0.163726169637072,0.16048767756223278,0.1521359974611792]\)
[0.999999999999, \(5.788192129 \mathrm{e}-17,2.7961406066 \mathrm{e}-48,2.06790561697 \mathrm{e}-79,3.398520641703 \mathrm{e}-111,0.0]\)

These cluster sizes are a dead giveaway that you are on the right track.

Cluster 0 has count 3000 Cluster 1 has count 1500 Cluster: 1 explainedvarience Cluster 2 has count 1000 Cluster: 2 explainedVarience Cluster 3 has count 2500 Cluster: 3 explainedVarience: Cluster 4 has count 1000 Cluster: 4 explainedVarience:

Cluster: 0 explainedVarience: [0.669525536882, 0.1662797338236, 0.16419473782323, 2.45886121026e-16, 5.5166246758226e-17, 2.202681855118e-17]
[ \(0.517083515243,0.4829164846848,1.1240263947 \mathrm{e}-16,7.59536857127 \mathrm{e}-17,2.2841893262568 \mathrm{e}-17,3.756984397667 \mathrm{e}-18]\)
[0.833387789374, 0.1666122103404, 2.4712754937e-32, 1.82764934226e-63, 3.0036689526738e-95, 0.0]
[0.177078608271, \(0.1757344315469,0.17084112066742,0.163726169637072,0.16048767756223278,0.1521359974611792]\)
[0.999999999999, 5.788192129e-17, 2.7961406066e-48, 2.06790561697e-79, 3.398520641703e-111, 0.0]
```

Looks like cluster 0 is 3000 points in a 3 dimensional shape, with 2 very similar dimensions and 1 longer.
Looks like cluster 1 is 1500 points in a 2 dimensional shape or roughly equal extents (ball, cube, dodecahedron?).
Looks like cluster 2 is 1000 points also in a 2 dimensional shape, but of seemingly unequal extents (rectangle? The letter "I"? An ellipsoid?).
Looks like cluster 3 is 2500 points in a 6 dimensional shape with fairly equal extents.
Looks like cluster 4 is 1000 points in a very, very straight line.

```

\section*{Easiest first: What is there to say about a line?}
```

cluster_num = 4
cluster = clusters.filter(1ambda x: x[1]==cluster_num).map(lambda x: x[0])
start0 = cluster.map(lambda x: x[0]).reduce(lambda x,y: min(x,y))
print(start0)
end0 = cluster.map(lambda x: x[0]).reduce(7ambda x,y: max (x,y))
print(end0)
20.001463417223093 27.995299694613074
\#should do this for all 6 coords...
start5 = cluster.map(lambda x: x[5]).reduce(lambda x,y: min(x,y))
print(start5)
end5 = cluster.map(lambda x: x[5]).reduce(lambda x,y: max (x,y))
print(end5)
20.001463417223093 27.995299694613074
It appears we have a line that goes from 20,20,20,20,20,20 to 28,28,28,28,28,28
Again, John is playing nice. The round numbers for point counts and coordinates are unlikely to be accidents.

```

- The significance of each dimension
- The orientation of the data
- The transformation to the lower dimensional space

\section*{How about those 2-dimensional shapes?}

\section*{Why think? Just plot!}

\section*{cluster_num = 1}
cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x: x[0])
center = [float(x) for \(x\) in centers[cluster_num]]
centered_cluster = cluster.map(1ambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]] df = spark.createDataFrame(centered_cluster)
```

assembler = vectorAssembler(inputCo1s=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')

```
ndf = assembler.transform(df)
pca \(=\) PCA(k=2, inputCol="feat_vec", outputCol="pca_features")
mode1 = pca.fit(ndf)
\(\mathrm{x}=\) model.transform(ndf). select('pca_features')
\(y=x \cdot r d d . \operatorname{map}(1\) ambda \(x:[x[0][0], x[0][1]])\)
\(\mathrm{z}=\mathrm{y} \cdot \operatorname{map}(1 \operatorname{ambda} \mathrm{x}: \operatorname{str}(\mathrm{x}[0])+\mathrm{\prime}, \mathrm{'}+\operatorname{str}(\mathrm{x}[1]))\)
z = z.repartition(1)
z.saveAsTextFile('2D data')

```

x = x.select('pca_features')
x.show(truncate=Fa1se)
+--
+---+
| [-11.442801230730225,-2.2456486179091795]|
|[8.199412704320977,-4.758034893331184]
| [-10.244417347787193,0.5396575347829049]
|[-11.869736554573121,-1.4845929620214862]|
| [-3.5546269239632644,-4.233601618163395]
|[2.7393561531172796,0.6760682876532856]
| [13.30478751297807,-0.9023265952197561]
|[-5.988746172900853,-4.015718103211636]
|[-14.53534496511185,-4.0009984448800555]
| [4.837789089973879,4.04799491602994]
| [8.897186913650424,-2.0837450631466874]
| [-1.708504262340559,0.03667661547683404]
| [-1.1697623781406488,3.40020825795184]
|[-1.2026596484091905,-3.8974522565315635]|
| [-3.671529907044845,-4.137095253338099]
| [-9.267303730165965,4.855142027927819]
| [-5.052591326725931,3.5269543649986637]
|[12.936260914202773,-2.2082924731603573]
|[-11.598584911100225,-0.6754460111338405]|
|[7.4124164286566945,-1.0304226290413516]|
+--+
y = x.rdd.map(lambda x: [x[0][0],x[0][1]])
z = y.map(lambda x: str(x[0])+', '+str(x[1]))
z = z.repartition(1)
z.saveAsTextFile('2D.dat')

```

I'm hauling around a lot of unnecessary data in these dataframes, just for illustrative purposes and debugging. I might want to trim that out for efficiency to scale this up.


Looks like a circle to me - if you pay attention to the axis scale, that is. So, putting it together, we have:
- 1500 points
- Circle
- Radius about 3
- Centered at \(40,40,40,15,15,15\)

\section*{Same for other 2 dimensional shape}

\section*{cluster_num = 2}
cluster = clusters.filter(lambda x: x[1]==cluster_num).map(lambda x : \(\mathrm{x}[0]\) ) center = [float(x) for \(x\) in centers[cluster_num]]
centered_cluster = cluster.map(1ambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]] df = spark.createDataFrame(centered_cluster)
```

assembler = vectorAssembler(inputCo1s=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')

```
ndf = assembler.transform(df)
pca \(=\) PCA(k=2, inputCol="feat_vec", outputCol="pca_features")
mode1 = pca.fit(ndf)
x = mode1.transform(ndf).select('pca_features')
\(y=x \cdot r d d . m a p(1 a m b d a x:[x[0][0], x[0][1]])\)
\(\mathrm{z}=\mathrm{y} \cdot \operatorname{map}(1 \operatorname{ambda} \mathrm{x}: \operatorname{str}(\mathrm{x}[0])+\mathrm{\prime}, \mathrm{'}+\operatorname{str}(\mathrm{x}[1]))\)
z = z.repartition(1)
z.saveAsTextFile('2D data')



Looks like a cross to me. So, putting it together, we have:
- 1000 points
- X Shape or cross
- Size of ~ 2 x 4 (I'm not picky)
- Centered at 71,71,71,71,71,71

\section*{Let's try the same with the 3D cluster.}
cluster_num = 0
cluster = clusters.filter(lambda x : \(\mathrm{x}[1]==\) cluster_num).map(lambda x : \(\mathrm{x}[0]\) )
center = [float(x) for \(x\) in centers[cluster_num]]
centered_cluster = cluster.map(1ambda x: [x[0]-center[0],x[1]-center[1],x[2]-center[2],x[3]-center[3],x[4]-center[4],x[5]-center[5]] ) df = spark.createDataFrame(centered_cluster)
assembler = VectorAssembler(inputCols=['_1', '_2','_3','_4','_5','_6'], outputCol='feat_vec')
ndf = assembler.transform(df)
pca = PCA(k=3, inputCol="feat_vec", outputCol="pca_features") mode1 = pca.fit(ndf)
\(x=\) mode1.transform(ndf).select('pca_features')
\(y=x . r d d . m a p(1 a m b d a x: ~[x[0][0], x[0][1], x[0][2]])\)
\(z=y \cdot m a p(1 a m b d a x: \operatorname{str}(x[0])+', ~ '+\operatorname{str}(x[1])+', ~ '+\operatorname{str}(x[2]))\)
z = z.repartition(1)
z.saveAsTextFile('3D data.dat')


\section*{Our 3D Object}

import csv
My matplotlib

This is a rectangular box. I rotated the perspective a bit to convince mysel
- 3000 points
- Rectangular box
- About \(10 \times 10 \times 20\)
- Centered at \(30,30,30,80,80,80\)

Once again, the orientation (from PCA) tells us its angle in 6D.
points \(=[]\)
with open('3d.dat', newline="') as csvfile:
spamreader = csv.reader(csvfile)
for row in spamreader:
points.append(( float(row[0]),float(row[1]),float(row[2]) )) print(row)
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(16,16))
ax = fig.add_subplot(projection='3d')
ax.scatter([x[0] for x in points], \(\mathrm{xx[1]}\) for x in points], \(\mathrm{x}[2]\) for x in points]) ax.view_init(elev=0,azim=80)

We can't visualize. We can note that the explained variance here
\[
\begin{array}{llllll}
0.177 & 0.175 & 0.170 & 0.163 & 0.160 & 0.152
\end{array}
\]
suggests a fairly symmetric shape.
So maybe it is a ball. But could it be a polyhedron? Or maybe a hollow 6D sphere or a gaussian distribution? Or maybe the "curse of dimensionality" has this effect on variance.


6D Bal1

I did a histogram of point distances from the cluster center. We might hope that it would reveal the shape. In this case we would find a it mostly follows a \(5^{\text {th }}\) power curve (which corresponds to a 6D bal1), but it does not cutoff as we would expect for a ball. It has a "tail". That does eventually cut off abruptly.

We could develop a few curves for common regular polygons. We would find that this one corresponds to a cube. And the last point gives us the half diagonal length.

I don't expect that any of you went that far! If you guessed:


6D Cube
- 2500 points
- "Roundish" shape
- Size (side) of ~7
- Centered at \(55,55,55,55,55,55\)

Then congratulations. I think you did very well.

\section*{A quick discussion about noise and outliers.}

KMeans (and most clustering approaches) have no notion of outliers. Every point gets assigned to a cluster. This introduces issues when faced with noise. Here is a simple dataset.

KMeans does well and gives us a sensible clustering.

```

Cost Clusters
384888
65392
15430
11707
9401
8313
7412
7081

```
```

63, 82) (40, 41)

```
63, 82 ) ( 40, 41 )
(47, 34 ) ( 24, 55 ) ( 63, 82 )
(47, 34 ) ( 24, 55 ) ( 63, 82 )
(24, 55) (63, 82) ( 53, 38) (41, 31)
(24, 55) (63, 82) ( 53, 38) (41, 31)
( 53, 38) ( 22, 57) ( 63, 82) (41, 31) ( 26, 54)
( 25, 59) ( 63, 82 ) ( 53, 38) ( 27, 53) ( 41, 31 ) ( 21, 55 )
( 63, 82 ) ( 53, 38) ( 23, 58) ( 40, 30) ( 22, 53) ( 28, 55 ) ( 42 , 32 )
( 22, 53) ( 63, 82) ( 53, 38) ( 39, 30) ( 23, 58) (41, 33) ( 28, 55 ) (43, 30)
( 63, 82) ( 53, 38) ( 28, 56) ( 39, 32) ( 24, 51 ) ( 22, 57 ) (43, 30) (40, 29)(41, 33)
```


A little noise.

Add in a little noise (10\%) and it is a little less obvious where our cost "elbow" is. But perhaps we are still ok.

The cluster centers are still reasonable too.

```
    Cost Clusters
1542624 ( 46, 51 )
616768
224474
145791
104353
    89475
    77963
    6 8 3 2 5
    6 3 9 9 1
( 64, 81) ( 40, 41 )
( 24, 56 ) ( 48, 34) ( 64, 81)
( 40, 30) ( 64, 82) ( 24, 56) ( 56, 37)
( 24, 56) ( 64, 82) ( 54, 38) ( 83, 32) ( 40, 30)
( 40, 30 ) ( 63, 82 ) ( 84, 55 ) ( 24, 56 ) ( 54, 38) ( 79, 17 )
( 24, 55 ) ( 63, 82 ) ( 54, 38 ) ( 40, 30) ( 16, 78) ( 84, 55 ) ( 78, 17 )
(41, 31) ( 63, 82) ( 21, 60) ( 54, 38) ( 25, 54) ( 85, 70) ( 17, 16 ) ( 83, 26 )
( 54, 38) ( 63, 82 ) ( 24, 56) ( 83, 40) ( 17, 10) ( 18, 34) (41, 31) ( 74, 11 ) ( 87, 75 )
```


A little more noise.

If we increase the noise to 33% it becomes hard to be confident about the cluster count. My best guess might be $3 .$.

And the cluster centers are no longer reliable.

Cost 2911714 1515577 844979 638983 492621 398572 438669 301994 289378

Clusters
$(47,51)$
$(62,80)(40,38)$
$(50,31)(66,80)$
$(50,31)(66,80)(22,57)$
$(45,32)(65,81)(22,58)(81$
$(23,60)(65,81)(19,17)(48,34)(81,26)$
$(81,26)(66,81)(24,55)(19,85)(20,16)(48,34)$
$(45,32)(79,17)(22,52)(65,83)(18,85)(53,62)(86,58)$
$(43,11)(62,81)(13,20)(48,35)(87,73)(81,24)(24,55)(18,85)$
$(23,60)(61,82)(41,31)(10,29)(82,49)(27,9)(54,38)(88,84)(78,14)$

Significant noise.

As the S / N ratio hits 1, it becomes very hard to find any elbow.
The real world often involves noise. Be aware of this limitation.

If there was an easy fix ("import super-k-means"), we would be using it. There are solutions, such as algorithms where you specify the S / N, but no magic bullets.

Even if we cheat and look at 4 clusters, the cluster centers are problematic.

Cost
Clusters
 4532592 2646052 1553843 1122661 981406 741845 811270 586240 462873

```
(48 , 50 )
( 42, 36 ) ( 60, 79 )
( 21, 58) ( 52, 29) ( 67, 79 )
(22,61 ) ( 66, 80 ) ( 80, 26 ) (43, 31)
( 79, 54) ( 22, 61) ( 43, 30 ) ( 63, 83) ( 79, 15)
( 22, 62 ) ( 80, 18) ( 48, 35 ) ( 60, 82 ) ( 20, 17 ) ( 84, 67 )
( 63, 31) ( 22, 54) ( 87, 67) ( 35, 26) ( 53, 60) ( 20, 84 ) (63, 84 )
( 22, 54) ( 86, 68) ( 55, 39) ( 64, 82 ) ( 12, 83) ( 36, 25 ) ( 81, 17 ) (40 , 81)
(48, 35 ) ( 15, 19) ( 47, 10) ( 61, 82 ) ( 83, 15 ) ( 20, 84 ) ( 23,55 ) ( 87 , 81 ) ( 78, 49 )
```

