It's a Multicore World

John Urbanic
Parallel Computing Scientist
Pittsburgh Supercomputing Center

Moore's Law abandoned serial programming around 2004

But Moore's Law is only beginning to stumble now.

Intel process technology capabilities

| High Volume
 Manufacturing | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2018 | 2021 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature Size | 90 nm | 65 nm | 45 nm | 32 nm | 22 nm | 14 nm | 10 nm | 7 nm |
| Integration Capacity
 (Billions of
 Transistors) | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |

And at end of day we keep using getting more transistors.
Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000

50,000

1,000

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count
Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under

That Power and Clock Inflection Point in 2004...

 didn't get better.

Fun fact: At 100+ Watts and $<1 \mathrm{~V}$, currents are beginning to exceed 100A at the point

Not a new problem, just a new scale...

Cray-2 with cooling tower in foreground, circa 1985

And how to get more performance from more transistors with the same power.

RULE OF THUMB

A 15\%		Frequency	Power	Performance
Reduction		Reduction	Reduction	Reduction
In Voltage				
Yields		15%	45%	10%

SINGLE CORE

Voltage $=1$
Freq $=1$
Power = 1
Perf = 1

DUAL CORE

Area $=2$
Voltage $=0.85$
Freq $=0.85$
Power = 1
Perf = ~1.8

Single Socket Parallelism

Processor	Year	Vector	Bits	SP FLops / core cycle	Cores	FLOPs/cycle
Pentium III	1999	SSE	128	3	1	3
Pentium IV	2001	SSE2	128	4	1	4
Core	2006	SSE3	128	8	2	16
Nehalem	2008	SSE4	128	8	10	80
Sandybridge	2011	AVX	256	16	12	192
Haswell	2013	AVX2	256	32	18	576
KNC	2012	AVX512	512	32	64	2048
KNL	2016	AVX512	512	64	72	4608
Skylake	2017	AVX512	512	96	28	2688

Putting It All Together

Prototypical Application:

 Serial Weather Model

First Parallel Weather Modeling Algorithm: Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model: Shared Memory (OpenMP)

Four meteorologists in ti

$$
\begin{aligned}
& \text { fforagma omp parallel Eor } \\
& \text { for (i=1; } 1 \&=n ; 1+r) \\
& \qquad a[1]=b[1]+c[1] ;
\end{aligned}
$$

Weather Model: Accelerator (OpenACC)

1 meteorologists coordinating 1000 math savants using tin cans and a string.

Weather Model: Distributed Memory


```
-
```


,
GIJIP! Barrier (MPJ_COMN_WORDD, errcode)

```


50 meteorologists using a telegraph.

The pieces fit like this...


\section*{Many Levels and Types of Parallelism}
- Vector (SIMD)
- Instruction Level (ILP)
- Instruction pipelining
- Superscaler (multiple instruction units)
- Out-of-order
- Register renaming
- Speculative execution
- Branch prediction

- Multi-Core (Threads)
- SMP/Multi-socket
- Accelerators: GPU \& MIC
- Clusters
- MPPs

\author{
Also Important \\ - ASIC/FPGA/DSP \\ - RAID/IO
}

\section*{Cores, Nodes, Processors, PEs?}
- The most unambiguous way to refer to the smallest useful computing device is as a Processing Element, or PE.
- This is usually the same as a single core.
- "Processors" usually have more than one core - as per the previous list.
- "Nodes" is commonly used to refer to an actual physical unit, most commonly a circuit board or blade with a network connection. These often have multiple processors.

I will try to use the term PE consistently here, but I may slip up myself. Get used to it as you will quite often hear all of the above terms used interchangeably where they shouldn't be.

\section*{MPPs (Massively Parallel Processors)}

Distributed memory at largest scale. Shared memory at lower level.

\section*{Summit (ORNL)}
- 122 PFlops Rmax and 187 PFlops Rpeak
- IBM Power 9, 22 core, 3GHz CPUs
- 2,282,544 cores
- NVIDIA Volta GPUs
- EDR Infiniband


\section*{Sunway TaihuLight (NSC, China)}
- 93 PFlops Rmax and 125 PFlops Rpeak
- Sunway SW26010 260 core, 1.45GHz CPU
- 10,649,600 cores
- Sunway interconnect


Top 10 Systems as of June 2023
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# & Computer & Site & Manufacturer & \begin{tabular}{l}
CPU \\
Interconnect [Accelerator]
\end{tabular} & Cores & \[
\begin{gathered}
\text { Rmax } \\
\text { (Pflops) }
\end{gathered}
\] & \begin{tabular}{l}
Rpeak \\
(Pflops)
\end{tabular} & Power (MW) \\
\hline 1 & Frontier & Oak Ridge National Laboratory United States & HPE & \begin{tabular}{l}
AMD EPYC 64C 2GHz \\
Slingshot-11 \\
AMD Instinct MI250X
\end{tabular} & 8,699,904 & 1194 & 1692 & 22.7 \\
\hline 2 & Fugaku & RIKEN Center for Computational Science Japan & Fujitsu & \begin{tabular}{l}
ARM \(8.2 \mathrm{~A}+48 \mathrm{C} 2.2 \mathrm{GHz}\) \\
Torus Fusion Interconnect
\end{tabular} & 7,630,072 & 442 & 537 & 29.9 \\
\hline 3 & LUMI & \begin{tabular}{l}
EuroHPC \\
Finland
\end{tabular} & HPE & \begin{tabular}{l}
AMD EPYC 64C 2GHz \\
Slingshot-11 \\
AMD Instinct MI250X
\end{tabular} & 2,220,288 & 309 & 428 & 6.0 \\
\hline 4 & Leonardo & EuroHPC Italy & Atos & Intel Xeon 8358 32C 2.6 GHz Infiniband HDR NVIDIA A100 & 1,824,768 & 238 & 304 & 7.4 \\
\hline 5 & Summit & Oak Ridge National Laboratory United States & IBM & \begin{tabular}{l}
Power9 22C 3.0 GHz \\
Dual-rail Infiniband EDR NVIDIA V100
\end{tabular} & 2,414,592 & 148 & 200 & 10.1 \\
\hline 6 & Sierra & Lawrence Livermore National Laboratory United States & IBM & Power9 3.1 GHz 22C Infiniband EDR NVIDIA V100 & 1,572,480 & 95 & 125 & 7.4 \\
\hline 7 & Sunway TaihuLight & National Super Computer Center in Wuxi China & NRCPC & Sunway SW26010 260C 1.45GHz Sunway Interconnect & 10,649,600 & 93 & 125 & 15.3 \\
\hline 8 & Perlmutter & NERSC United States & HPE & \begin{tabular}{l}
EPYC 64C 2.45 GHz \\
Slingshot-10 NIVINIA 410 n
\end{tabular} & 761,304 & 70 & 93 & 2.6 \\
\hline 9 & Selene & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{500 Inspur TS10000, Xeon Gold 6130 16C 2 V100, 25G Ethernet, Inspur Internet Service \(P\)}} & \multirow[t]{2}{*}{40,320} & \multirow[t]{2}{*}{1.87} & \begin{tabular}{l|l|}
\hline 3.52 & 79 \\
\hline
\end{tabular} & 2.6 \\
\hline 10 & Tiahne-2A & & & & & & 101 & 18.4 \\
\hline
\end{tabular}

\section*{The word is Heterogeneous}

And it's not just supercomputers. It's on your desk, and in your phone.


How much of this can you program?

In Conclusion...
```

