It's a Multicore World

John Urbanic

Parallel Computing Scientist
Pittsburgh Supercomputing Center

Moore's Law abandoned serial programming around 2004

But Moore's Law is only beginning to stumble now.

Intel process technology capabilities

High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2018	2021
Feature Size	90nm	65nm	45nm	32nm	22nm	14nm	10nm	7nm
Integration Capacity (Billions of Transistors)	2	4	8	16	32	64	128	256

Transistor for 90nm Process

Source: Intel

Influenza Virus

Source: CDC

And at end of day we keep using getting more transistors.

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

That Power and Clock Inflection Point in 2004... didn't get better.

Not a new problem, just a new scale...

Cray-2 with cooling tower in foreground, circa 1985

And how to get more performance from more transistors with the same power.

RULE OF THUMB

Frequency	Power	Performance
Reduction	Reduction	Reduction
15%	45%	10%

Area = :

Voltage = 1

Freq = 1

Power = 1

Perf = 1

DUAL CORE

Area = 2

Voltage = 0.85

Freq = 0.85

Power = 1

Perf = ~ 1.8

Single Socket Parallelism

Processor	Year	Vector	Bits	SP FLOPs / core / cycle	Cores	FLOPs/cycle
Pentium III	1999	SSE	128	3	1	3
Pentium IV	2001	SSE2	128	4	1	4
Core	2006	SSE3	128	8	2	16
Nehalem	2008	SSE4	128	8	10	80
Sandybridge	2011	AVX	256	16	12	192
Haswell	2013	AVX2	256	32	18	576
KNC	2012	AVX512	512	32	64	2048
KNL	2016	AVX512	512	64	72	4608
Skylake	2017	AVX512	512	96	28	2688

Putting It All Together

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Prototypical Application: Serial Weather Model

First Parallel Weather Modeling Algorithm: Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model: Shared Memory (OpenMP)

Four meteorologists in the

Weather Model: Accelerator (OpenACC)

1 meteorologists coordinating 1000 math savants using tin cans and a string.

Weather Model: Distributed Memory (MPI)

The pieces fit like this...

Many Levels and Types of Parallelism

- Vector (SIMD)
- Instruction Level (ILP)
 - Instruction pipelining
 - Superscaler (multiple instruction units)
 - Out-of-order
 - Register renaming
 - Speculative execution
 - Branch prediction
- Multi-Core (Threads)
- SMP/Multi-socket
- Accelerators: GPU & MIC
- Clusters
- MPPs

Compiler (not your problem)

Also Important

- ASIC/FPGA/DSP
- RAID/IO

Cores, Nodes, Processors, PEs?

- The most unambiguous way to refer to the smallest useful computing device is as a Processing Element, or PE.
- This is usually the same as a single core.
- "Processors" usually have more than one core as per the previous list.
- "Nodes" is commonly used to refer to an actual physical unit, most commonly a circuit board or blade with a network connection. These often have multiple processors.

I will try to use the term PE consistently here, but I may slip up myself. Get used to it as you will quite often hear all of the above terms used interchangeably where they shouldn't be.

MPPs (Massively Parallel Processors)

Distributed memory at largest scale. Shared memory at lower level.

Summit (ORNL)

- 122 PFlops Rmax and 187 PFlops Rpeak
- IBM Power 9, 22 core, 3GHz CPUs
- 2,282,544 cores
- NVIDIA Volta GPUs
- EDR Infiniband

Sunway TaihuLight (NSC, China)

- 93 PFlops Rmax and 125 PFlops Rpeak
- Sunway SW26010 260 core, 1.45GHz CPU
- 10,649,600 cores
- Sunway interconnect

Top 10 Systems as of June 2023 CPU

#	Computer	Site	Manufacturer	Interconnect [Accelerator]	Cores	Rmax (Pflops)	Rpeak (Pflops)	Power (MW)
1	Frontier	Oak Ridge National Laboratory United States	НРЕ	AMD EPYC 64C 2GHz Slingshot-11 AMD Instinct MI250X	8,699,904	1194	1692	22.7
2	Fugaku	RIKEN Center for Computational Science Japan	Fujitsu	ARM 8.2A+ 48C 2.2GHz Torus Fusion Interconnect	7,630,072	442	537	29.9
3	LUMI	EuroHPC Finland	НРЕ	AMD EPYC 64C 2GHz Slingshot-11 AMD Instinct MI250X	2,220,288	309	428	6.0
4	Leonardo	EuroHPC Italy	Atos	Intel Xeon 8358 32C 2.6GHz Infiniband HDR NVIDIA A100	1,824,768	238	304	7.4
5	Summit	Oak Ridge National Laboratory United States	IBM	Power9 22C 3.0 GHz Dual-rail Infiniband EDR NVIDIA V100	2,414,592	148	200	10.1
6	Sierra	Lawrence Livermore National Laboratory United States	IBM	Power9 3.1 GHz 22C Infiniband EDR NVIDIA V100	1,572,480	95	125	7.4
7	Sunway TaihuLight	National Super Computer Center in Wuxi China	NRCPC	Sunway SW26010 260C 1.45GHz Sunway Interconnect	10,649,600	93	125	15.3
8	Perlmutter	NERSC United States	НРЕ	EPYC 64C 2.45 GHz Slingshot-10 MV/DIA 4100	761,304	70	93	2.6

Inspur TS10000, Xeon Gold 6130 16C 2.1GHz, NVIDIA Tesla 500 40,320 1.87 3.52 V100, 25G Ethernet, Inspur Selene 79 Internet Service P

2.6

18.4

101

9

10

Tiahne-2A

China

The word is *Heterogeneous*

And it's not just supercomputers. It's on your desk, and in your phone.

How much of this can you program?

In Conclusion...

