Introduction to OpenMP

John Urbanic
Parallel Computing Scientist
Pittsburgh Supercomputing Center

What is OpenMP?

It is a directive based standard to allow programmers to develop threaded parallel codes on shared memory computers.

Directives

Directives: an awesome idea whose time has arrived.

OpenMP

OpenACC

Key Advantages Of This Approach

- High-level. No involvement of pthreads or hardware specifics.
- Single source. No forking off a separate code. Compile the same program for multi-core or serial, non-parallel programmers can play along.
- Efficient. Very favorable comparison to pthreads.
- Performance portable. Easily scales to different configurations.
- Incremental. Developers can port and tune parts of their application as resources and profiling dictates. No wholesale rewrite required. Which can be quick.

Broad Compiler Support (For 3.x)

- Gnu
- Intel
- IBM
- NVIDIA
- Clang/Flang/LLVM
- AMD
- ARM
- MS Visual Studio*

A True Standard With A History

OpenMP.org: specs and forums and useful links

e_pesix threads

- 1997 OpenMP 1.0
- 1998 OpenMP 2.0
- 2005 OpenMP 2.5 (Combined C/C++/Fortran)
- 2008 OpenMP 3.0
- 2011 OpenMP 3.1
- 2013 OpenMP 4.0 (Accelerators)
- 2015 OpenMP 4.5
- 2018 OpenMP 5.0
- 2021 OpenMP 5.2

Hello World

Hello World in C

int main(int argc, char** argv) \{
\#pragma omp paralle1
\{ printf("Hello world.\n"); \}
\}

Output with OMP_NUM_THREADS=4

General Directive Syntax and Scope

This is how these directives integrate into code:

Fortran

C

clause: optional modifiers
which we shall discuss
I will indent the directives at the natural code indentation level for readability. It is a common practice to always start them in the first column (ala \#define/\#ifdef). Either is fine with C or Fortran 90 compilers.

Pthreads

```
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 4
void *PrintHello(void *threadid)
{
printf("Hel1o Wor1d.\n");
    pthread_exit(NULL);
}
int main (int argc, char *argv[])
{
    pthread_t threads[NUM_THREADS];
    int rc;
    long t;
    for(t=0; t<NUM_THREADS; t++){
        rc = pthread_create(&threads[t], NULL, PrintHel1o, (void *)t);
        if (rc){
            exit(-1);
        }
    }
    pthread_exit(NULL);
}
```


Big Difference!

- With pthreads, we changed the structure of the original code. Nonthreading programmers can't understand new code.
- We have separate sections for the original flow, and the threaded code. Serial path now gone forever.
- This only gets worse as we do more with the code.
- Exact same situation as assembly used to be. How much hand-assembled code is still being written in HPC now that compilers have gotten so efficient?

Thread vs. Process

Two Processes

General Thread Capability

Typical Desktop Application Threading

Typical Game Threading

HPC Application Threading

HPC Use of OpenMP

- This last fact means that we will emphasize the capabilities of OpenMP with a different focus than non-HPC programmers.
- We will focus on getting our kernels to parallelize well.
- We will be most concerned with dependencies, and not deadlocks and race conditions which confound other OpenMP applications.
- This is very different from the generic approach you are likely to see elsewhere. The "encyclopedic" version can obscure how easy it is to get started with common loops.
- But we will return to the most generic and flexible capabilities before we are done (OpenMP tasks).

This looks easy! Too easy...

- Why don't we just throw parallel for/do (the OpenMP command for this purpose) in front of every loop?
- Better yet, why doesn't the compiler do this for me?

The answer is that there are several general issues that would generate incorrect results or program hangs if we don't recognize them:

- Data Dependencies
- Data Races

Data Dependencies

Most directive-based parallelization consists of splitting up big do/for loops into independent chunks that the many processors can work on simultaneously.

Take, for example, a simple for loop like this:

$$
\begin{aligned}
& \text { for(index }=0 \text {; index<10000; index++) } \\
& \text { Array[index] }=4 * \text { Array[index]; }
\end{aligned}
$$

When run on 10 cores, it will execute something like this...

No Data Dependency

for (index $=0$, index<999, index++) Array[index] = 4*Array[index];
Core
3
for (index=3000, index<3999,index++)
Array[index] = 4*Array[index];

for (index=1000, index<1999,index++)
Array[index] = 4*Array[index];

Core
 4

for (index=4000, index<4999, index++)
Array[index] = 4*Array[index];

Core
 2

for (index=2000, index<2999, index++) Array[index] = 4*Array[index];

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

```
for(index=1; index<10000; index++)
    Array[index] = 4 * Array[index] - Array[index-1];
```

This is perfectly valid serial code.

Data Dependency

Now core 1, in trying to calculate its first iteration,

```
for(index=1000; index<1999; index++)
    Array[1000] = 4 * Array[1000] - Array[999];
```

needs the result of core 0's last iteration. If we want the correct ("same as serial") result, we need to wait until core 0 finishes. Likewise for cores 2, 3, ...

Recognizing and Eliminating Data Dependencies

- Recognize dependencies by looking for:
- A dependence between iterations. Often visible due to use of differing indices.
- Is the variable written and also read?
- Any non-indexed (scaler) variables that are written to by index dependent variables.
- You may get compiler warnings, and you may not.
- Can these be overcome?
- Sometimes a simple rearrangement of the code will suffice. There is a common bag of tricks developed for this as this issue goes back 40 years in HPC (for vectorized computers). Many are quite trivial to apply.
- We will now learn about OpenMP capabilities that will make some of these disappear.
- Sometimes they are fundamental to the algorithm and there is no answer other than rewrite completely or leave as serial.

Plenty of Loops Don't Have Dependencies

If there aren't dependencies, we can go ahead and parallelize the loop. In the most straightforward case:

```
int main ( int argc, char *argv[] ){
    int array[1000000];
    #pragma omp paralle1 for
    for (int i = 0; i <= 1000000; i++ ){
        array[i] = i;
    }
    Standard c
```

program simple
integer array(1000000)
! \$omp paralle1 do
do $i=1,1000000$
$\operatorname{array}(i)=i$
enddo
! \$omp end paralle1 do
end program

Fortran

Compile and Run

We are using PGI compilers here. Others are very similar (-fopenmp, -omp). Likewise, if you are using a different command shell, you may do "setenv OMP_NUM_THREADS 8".

If you wonder if/how your directives are taking effect (a very valid question), the compilers always offer to be more verbose. With PGI, you can add the "-Minfo=mp" option. Give it a try.

Loops with Shared Variables

Most serious loops have other variables besides an array or two. The sharing of these variables introduces some potential issues. Here is a toy problem with a scalar that is written to.

```
float height[1000], width[1000], cost_of_paint[1000];
float area, price_per_galion = 20.00, coverage = 20.5;
for (index=0; index<1000; index++) {
    area = height[index] * width[index];
    cost_of_paint[index] = area * price_per_ga11on / coverage;
```

```
real*8 height(1000),width(1000),cost_of_paint(1000)
```

real*8 height(1000),width(1000),cost_of_paint(1000)
real*8 area, price_per_gallon, coverage
real*8 area, price_per_gallon, coverage
do index=1,1000
do index=1,1000
area = height(index) * width(index)
area = height(index) * width(index)
cost_of_paint(index) = area * price_per_gallon / coverage
cost_of_paint(index) = area * price_per_gallon / coverage
end do

```
end do
```

C Version
Fortran Version

Applying Some OpenMP

A quick dab of OpenMP would start like this:

```
#pragma omp paralle1 for
for (index=0; index<1000; index++){
    area = height[index] * width[index];
    cost_of_paint[index] = area * price_per_gallon / coverage;
}
```

! \$omp paralle1 do
do index=1,1000
area $=$ height(index) * width(index)
cost_of_paint(index) = area * price_per_gal1on / coverage
end do
! \$omp end paralle1 do

C Version

We are requesting that this for/do loop be executed in parallel on the available processors.

Something is wrong.

If we ran this code we would find that sometimes our results differ from the serial code (and are simply wrong). The reason is that we have a shared variable that is getting overwritten by all of the threads.

```
#pragma omp paralle1 for
for (index=0; index<1000; index++){
    area = height[index] * width[index];
    cost_of_paint[index] = area * price_per_gallon / coverage;
}
```

```
!$omp paral1e1 do
do index=1,1000
    area = height(index) * width(index)
    cost_of_paint(index) = area * price_per_gallon / coverage
end do
! $omp end do
```

Between its assignment and use by any one thread, there are other threads (7 here) potentially accessing and changing it. This is prone to error. Possibly the worst kind: the intermittent one.

Shared Variables

for (index=0; index<1000; index++) \{ area $=$ height[index] * width[index]; cost_of_paint[index] = area * price...
$\}$

With Two Threads

By default variables are shared in OpenMP. Exceptions include index variables and variables declared inside parallel regions (C/C++). More later.

What We Want

We can accomplish this with the private clause.

Private Clause At Work

Apply the private clause and we have a working loop:

```
#pragma omp paralle1 for private(area)
for (index=0; index<1000; index++){
    area = height[index] * width[index];
    cost_of_paint[index] = area * price_per_gallon / coverage;
}
```

```
!$omp paral1e1 do private(area)
do index=1,1000
    area = height(index) * width(index)
    cost_of_paint(index) = area * price_per_gal1on / coverage
end do
!$omp end parallel do
```

C Version
Fortran Version

There are several ways we might wish these controlled variables to behave. Let's look at the related data-sharing clauses. private is the most common by far.

Other Data Sharing Clauses

This is the default (with the exception of index and locally declared variables. You might use this clause for clarification purposes.
firstprivate (list) This will initialize the privates with the value from the master thread. Otherwise, this does not happen!
lastprivate (list) This will copy out the last thread value into the master thread copy. Otherwise, this does not happen! Available in for/do loop or section only, not available where "last iteration" isn't clearly defined.
default (list) You can change the default type to some of the others.
threadprivate (list) Define at global level and these privates will be available in every parallel region. Use with copyin() to initialize values from master thread. Can think of these as on heap, while privates are on stack.

What is automatically private?

The default rules for sharing (which you should never be shy about redundantly designating with clauses) have a few subtleties.

Default is shared, except for things that can not possibly be:

- outer loop index variable
- inner loop index variables in Fortran, but not in C.
- local variables in any called subroutine, unless using static (C) or save (Fortran)
- variables declared within the block (for C).

This last makes the C99 loop syntax quite convenient for nested loops:

```
#pragma omp paral1e1 for
for ( int i = 0; i <= n; i++ ){
    for ( int j = 0; j<= m; j++ ){
        Array[i][j] = Array[i][j]+1
    }
}
```


Loop Order and Depth

The parallel for/do loop is common enough that we want to make sure we really understand what is going on.

In general (well beyond OpenMP reasons), you want your innermost loop to index over adjacent items in memory. This is opposite for Fortran and C. In C this last index changes fastest. We can collapse nested loops with a collapse(n) clause.

Prime Counter

Let's try a slightly more complicated loop. This counts prime numbers.

C Version

```
# include <stdlib.h>
# include <stdio.h>
int main ( int argc, char *argv[] ){
    int n = 500000;
    int not_primes=0;
    int i,j;
    for ( i = 2; i <= n; i++ ){
        for ( j = 2; j < i; j++ ){
            if (i % j == 0){
                not_primes++;
                break;
            }
        }
    }
    printf("Primes: %d\n", n - not_primes);
}
```

```
program primes
```

program primes
integer n, not_primes, i, j
integer n, not_primes, i, j
n = 500000
n = 500000
not_primes=0
not_primes=0
do i = 2,n
do i = 2,n
do j = 2,i-1
do j = 2,i-1
if (mod}(i,j)== 0) the
if (mod}(i,j)== 0) the
not_primes = not_primes + 1
not_primes = not_primes + 1
exit
exit
end if
end if
end do
end do
end do
end do
print *, 'Primes: ', n - not_primes
print *, 'Primes: ', n - not_primes
end program

```
end program
```

Fortran Version

Parallel Prime Counter

The most obvious thing is to parallelize the main loop.

```
C Version
#pragma omp paralle1 for private (j)
for ( i = 2; i <= n; i++ ){
    for ( j = 2; j < i; j++ ){
        if ( i % j == 0 ){
            not_primes++;
            break;
        }
    }
}
```


Fortran Version

! \$omp paralle1 do
do $i=2, n$ do $j=2, i-1$
if (mod(i,j) == 0) then
not_primes = not_primes + 1
exit
end if
end do
end do
! \$omp end paralle1 do

If we run this code on multiple threads, we will find that we get inconsistent results. What is going on?

Data Races

The problem here is a shared variable (not_primes) that is being written to by many threads.
The statement not_primes = not_primes + 1 may look "atomic", but in reality it requires the processor to first read, then update, then write the variable into memory. While this is happening, another thread may be writing its own (now obsolete) update. In this case, some of the additions to not_primes may be overwritten and ignored.

This sounds similar to our paint calculator example earlier. So will private fix this? Almost. Private variables aren't subject to data races, and we will end up with multiple valid not_prime subtotals. So far so good.

The question then becomes, how do we sum these up into the real total we are looking for?
It is common to have a private variable that has to live on after the loop. This requires us to reduce these private copies back to a single scaler.

Reductions

Reductions are private variables that must be reduced to a single value eventually.

Line
Continuation

Fortran Version

```
```

!\$omp paral1e1 do reduction(+:not_primes)

```
```

!\$omp paral1e1 do reduction(+:not_primes)
do i = 2,n
do i = 2,n
do j = 2,i-1
do j = 2,i-1
if (mod}(\mathbf{i},j)== 0) the
if (mod}(\mathbf{i},j)== 0) the
not_primes = not_primes + 1
not_primes = not_primes + 1
exit
exit
end if
end if
end do
end do
end do
end do
! \$omp end paral1e1 do

```
```

! \$omp end paral1e1 do

```
```

At the end of the parallel region (the do/for loop), the private reduction variables will get combined using the operation we specified. Here, it is sum (+).

Reductions

In addition to sum, we have a number of other options. You will find sum, min and max to be the most common. Note that the private variable copies are all initialized to the values specified.

Operation	Initialization	
+	0	
\max	least number possible	
\min	largest number possible	
-	0	
Bit $(\&, \mid, \wedge$, iand, ior)	$\sim 0,0$	
Logical (\&\&, \|	, .and., .or.)	1,0, .true., .false.

The 4.0 standard even allows you to define your own. You probably won't.

We shall return.

```
#pragma omp paral1e1 for private (j) \
            reduction(+:not_primes)
for ( i = 2; i <= n; i++ ){
    for ( j = 2; j < i; j++ ){
        if ( i % j == 0 ){
            not_primes++;
            break;
        }
    }
}
C Version
```

```
!$omp paral1e1 do reduction(+:not_primes)
    do i = 2,n
        do j = 2,i-1
            if (mod(i,j) == 0) then
                not_primes = not_primes + 1
                    exit
            end if
        end do
    end do
!$omp end paral1e1 do
```

A few notes before we leave (for now):

The OpenMP standard forbids branching out of parallel do/for loops, although you can now cancel. Since the outside loop is the threaded one (that is how it works), our break/exit statement for the inside loop are OK.

- You can verify the output at primes.utm.edu/nthprime/index.php\#piofx Note that we count 1 as prime. They do not.

Our Exercise: Laplace Solver

- We also use this for MPI and OpenACC. It is a great simulation problem, not rigged for OpenMP.
- In this most basic form, it solves the Laplace equation: $\nabla^{2} f(x, y)=0$
- The Laplace Equation applies to many physical problems, including:
- Electrostatics
- Fluid Flow
- Temperature
- For temperature, it is the Steady State Heat Equation:

Initial Conditions

Final Steady State

Metal
Plate

Exercise Foundation: Jacobi Iteration

- The Laplace equation on a grid states that each grid point is the average of its neighbors.
- We can iteratively converge to that state by repeatedly computing new values at each point from the average of neighboring points.
- We just keep doing this until the difference from one pass to the next is small enough for us to tolerate.

$$
A_{k+1}(i, j)=\frac{A_{k}(i-1, j)+A_{k}(i+1, j)+A_{k}(i, j-1)+A_{k}(i, j+1)}{4}
$$

Serial Code Implementation

```
for(i = 1; i <= ROWS; i++) {
    for(j = 1; j <= COLUMNS; j++) {
        Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_1ast[i-1][j] +
                                Temperature_1ast[i][j+1] + Temperature_1ast[i][j-1]);
    }
}
```

```
do j=1,columns
    do i=1, rows
        temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
                        temperature_1ast(i,j+1)+temperature_last(i,j-1) )
    enddo
enddo
```


Serial C Code (kernel)

```
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {
    for(i = 1; i <= ROWS; i++) {
        for(j = 1; j <= COLUMNS; j++) {
            Temperature[i][j] = 0.25 * (Temperature_1ast[i+1][j] + Temperature_1ast[i-1][j] +
                                Temperature_7ast[i][j+1] + Temperature_1ast[i][j-1]);
    }
}
dt = 0.0;
for(i = 1; i <= ROWS; i++){
    for(j = 1; j <= COLUMNS; j++){
        dt = fmax( fabs(Temperature[i][j]-Temperature_1ast[i][j]), dt);
        Temperature_last[i][j] = Temperature[i][j];
    }
}
if((iteration % 100) == 0) {
    track_progress(iteration);
}
iteration++;
```

\}

Serial C Code Subroutines

```
```

void initialize(){

```
```

void initialize(){
int i,j;
int i,j;
for(i = 0; i <= ROWS+1; i++){
for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){
}
}
}
}
// these boundary conditions never change throughout run
// these boundary conditions never change throughout run
// set left side to 0 and right to a linear increase
// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {
for(i = 0; i <= ROWS+1; i++) {
Temperature_7ast[i][0] = 0.0;
Temperature_7ast[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
}
}
// set top to 0 and bottom to linear increase
// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {
for(j = 0; j <= COLUMNS+1; j++) {
Temperature_last[0][j] = 0.0;
Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
}

```
```

 }
    ```
```

\}

BCs could run from 0 to ROWS+1 or from 1 to ROWS. We chose the former.

```
void track_progress(int iteration) {
    int i;
    printf("-- Iteration: %d --\n", iteration);
    for(i = ROWS-5; i <= ROWS; i++) {
        printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
    }
    printf("\n");
}
```

\#include <stdlib.h> include <stdio.h \#include <math.h>
\#include <sys/time.h>
// size of plate \#define COLUMNS
\#define ROWS
/ largest permitted change in temp (This value takes about 3400 steps)
// largest permitted change
\#define MAX_TEMP_ERROR 0.01
double Temperature[ROWS+2][coLUMNS+2];
double Temperature_last[ROWS +2$][$ [CoLUMNS +2$]$; $/ /$ temperature grid
temperature grid from last iteration
// helper routines
oid track_progress(int iter)
int main(int argc, char *argv[]) \{
int i, j;
int max_iterations
int iteration=1;
double dt=100;
struct timeval
/ grid indexes
struct timeval start_time, stop_time, elapsed_time; // limers change in
printf("Maximum iterations [100-4000]?\n");
scanf("\%d", \&max_iterations);
gettimeofday(\&start_time,NULL); // unix timer
initialize(); // initialize Temp_last including boundary conditions
// do until error is minimal or until max steps
while ($\mathrm{dt}>$ MAX TEMP_ERROR \& iteration $<=$ max_iterations)
// main calculation: average my four neighbors
($\operatorname{for}(j$; $=1<=$ ROWS; $i++$) $\{$
or ($\mathrm{j}=1$; j <= CoLUMNS; $\mathrm{j}++$)
(Temperature_last[i+1][j] + Temperature_last[i-1][j] +
\}
\}
$\mathrm{dt}=0.0$; // reset largest temperature change
// copy grid to old grid for next iteration and find latest dt
$\operatorname{For}(\mathrm{i}=1 ; \mathrm{i}<=$ ROWS; $i++)\{$
$\mathrm{dt}=\mathrm{fmax}(\mathrm{fabs}(\mathrm{Temperature}[\mathrm{i}][\mathrm{j}]$-Temperature_1ast[i][j]), dt)
Temperature_last $[i][j]=$ Temperature $[i][j]$:
\} \}
// periodically print test values
(iteration \% 100) $=0$) $\{$
\}
iteration++
\}
ettimeofday(\&stop_time, NULL)
timersub(\&stop_time, \&start_time, \&elapsed_time); // unix time subtract routine
printf("\nMax error at iteration \%d was \%f\n", iteration-1, dt);
printf("Total time was \%f seconds. $\backslash n "$ ", elapsed_time.tv_sectelapsed_time.tv_usec/1000000.0); \}
// initialize plate and boundary conditions
/ Temp_last is used to to start first iteration
void initialize() \{
int i, j;
for $(\mathbf{i}=0 ; i<=\operatorname{RowS}+1 ; i++)\{$ for $(j=0 ; j<=$ CoLuMNS $+1 ; j++)\{$
Temperature_last $[i][j]=0.0$;
$\}^{\}}$
// these boundary conditions never change throughout run
// set left side to 0 and right to a linear increase
($=0 ; i$ <emperature last $[i][0]$ it
$\begin{aligned} & \text { Temperature_last } \\ & \text { Temperature_last }[i][\text { coLUMNS }+1]\end{aligned}=(100.0 /$ ROWS $) * i ;$
\}
// set top to 0 and bottom to linear increas
$\begin{aligned} & \text { Th }(j=0 ; ~j<=\operatorname{COLUMNS}+1 ; ~ j++) \\ & \text { Temperature last }[0][j]=0\end{aligned}$
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
\}
// print diagonal in bottom right corner where most action is void track_progress(int iteration) \{
int i;
printf("---------- Iteration number: \%d ------------\n", iteration);
for ($\mathrm{i}=$ ROWS-5; $\mathrm{i}<=$ ROWS; i++) \{
\} printf(")

Serial Fortran Code (kernel)

```
do while ( dt > max_temp_error .and. iteration <= max_iterations)
    do j=1,columns
        do i=1,rows
            temperature(i,j)=0.25* (temperature_last(i+1,j)+temperature_7ast(i-1,j)+ &
                temperature_last(i,j+1)+temperature_last(i,j-1) )
        enddo
    enddo
    dt=0.0
    do j=1,columns
        do i=1,rows
            dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
            temperature_last(i,j) = temperature(i,j)
        enddo
    enddo
    if( mod(iteration,100).eq.0 ) then
        ca11 track_progress(temperature, iteration)
    endif
    iteration = iteration+1
enddo
endif
iteration = iteration+1
enddo
```

temp
array and
find max
change

Serial Fortran Code Subroutines

```
subroutine initialize( temperature_last )
    implicit none
\begin{tabular}{ll} 
integer, parameter & \(::\) columns=1000 \\
integer, parameter & \(:: ~ r o w s=1000\) \\
integer & \(:: ~ i, j\)
\end{tabular}
integer
```

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last
temperature_1ast $=0.0$
!these boundary conditions never change throughout run

```
!set left side to 0 and right to linear increase
    do i=0,rows+1
        temperature_1ast(i,0) = 0.0
    temperature_1ast(i,columns+1) = (100.0/rows) * i
enddo
!set top to 0 and bottom to linear increase
do \(j=0\), columns +1
temperature_1ast \((0, j)=0.0\)
temperature_1ast(rows \(+1, j)=((100.0) /\) columns \() ~ * ~ j\) enddo
```

end subroutine initialize
subroutine track_progress(temperature, iteration) implicit none
integer, parameter integer, parameter integer
: : columns=1000
:: rows=1000
double precision, dimension(0:rows+1,0:columns+1) :: temperature
print *, '----------- Iteration number: ', iteration, \qquad $-{ }^{\prime}$
do $i=5,0,-1$
write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), \& enddo print *

Whole Fortran Code
program serial
implicit none
!Size of plate integer, parameter
integer, parameter integer, parameter
integer
double precision
real
:: columns=1000
:: rows $=1000$
: max_temp_error=0.01
:: i, j, max_iterations, iteration=1
$\mathrm{dt}=100.0$
, stop_time
double precision, dimension($0:$:rows $+1,0:$ columns +1) :: temperature, temperature_last print*, 'Maximum iterations [100-4000]?'
read*, max_iterations
call cpu_time(start_time) !Fortran timer
call initialize(temperature_last)
!do until error is minimal or until maximum steps
do while (dt > max_temp_error .and. iteration <= max_iterations)
do $j=1$, columns
temperature $(\mathrm{i}, \mathrm{j})=0.25^{*}$ (temperature_last $(\mathrm{i}+1, \mathrm{j})+$ temperature_last $(\mathrm{i}-1, \mathrm{j})+$ \& temperature_1ast(i,j+1)+temperature_1ast(i,j-1))
enddo
enddo
$\mathrm{dt}=0.0$
copy grid to old grid for next iteration and find max change do $j=1$, columns
$i=1$, rows
$d t=\max (\operatorname{abs}$ (temperature $(i, j)-$ temperature_last $(i, j)), d t$) temperature_last $(i, j)=\operatorname{temperature}(i, j)$
enc
enddo
! periodically print test values
$\mathrm{if}(\bmod (i t e r a t i o n, ~$
cal1 track_progress(temperature, iteration)
endif
iteration $=$ iteration +1
enddo
cal1 cpu_time(stop_time)
print*, 'Max error at iteration ', iteration-1, ', was ',dt
print*, 'Total time was ',stop_time-start_time,
end program serial

```
initialize plate and boundery conditions
temp_last is used to to start first iteration
subroutine initialize( temperature_last)
    implicit none
\begin{tabular}{ll} 
integer, parameter & \(::\) columns=1000 \\
integer, parameter & \(::\) rows \\
integer & \(:: i, j\)
\end{tabular}
```

double precision, dimension($0:$ rows $+1,0:$ columns+1) :: temperature_last temperature_7ast $=0.0$
! these boundary conditions never change throughout run
set left side to 0 and right to linear increase $i=0$, rows +1
temperature_last $(\mathrm{i}, 0)=0.0$
temperature_last $(\mathrm{i}$, columns +1$)=(100.0 /$ rows $) *$ i
enddo
! set top to 0 and bottom to linear increase
do $\mathrm{j}=0$, columns +1
temperature_last $(0, j)=0.0$
temperature_last $($ rows $+1, j)=((100.0) /$ columns $) * j$ enddo
end subroutine initialize
!print diagonal in bottom corner where most action is !print diagonai in bottom corner where most action
implicit none

```
integer, parameter
integer, parameter
integer
```

:: columns=1000
:: rows=100
$:: ~ i, i t e r a t i o ~$
double precision, dimension(0:rows+1,0:columns+1) :: temperature
print *, '---------- Iteration number: ', iteration,
\qquad
\qquad ---'
 rows-i, columns-i, temperature(rows-i,columns-i)
enddo
end subroutine track_progress

Exercise 1: Use OpenMP to parallelize the Jacobi loops

(About 45 minutes)

1) Log onto a node requesting all the 32 cores.
```
> interact -n 32
```

2) Edit laplace_serial.c or laplace_serial. 99 (your choice) and add directives where it helps. Try adding "-Minfo=mp" to verify what you are doing.
3) Run your code on various numbers of cores (such as 8, per below) and see what kind of speedup you achieve.
> nvc -mp laplace_omp.c or nvfortran -mp 1aplace_omp.f90
> export OMP_NUM_THREADS=8
> a.out

Exercise 1 C Solution

 #pragma omp parallel for private(i,j)
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_1ast[i+1][j] + Temperature_1ast[i-1][j] +
 Temperature_1ast[i][j+1] + Temperature_1ast[i][j-1]);
 }
 }
 dt = 0.0; // reset largest temperature change
 #pragma omp parallel for reduction(max:dt) private(i,j)
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_1ast[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }
if((iteration % 100) == 0) {
track_progress(iteration);
}
iteration++;
}

```

\section*{Also this one, with a reduction}
```

```
while ( dt > MAX_TEMP_ERROR && iteration <= max_iterations ) {
```

```
```

while (dt > MAX_TEMP_ERROR \&\& iteration <= max_iterations) {

```
```

 Thread this loop

Exercise 1 Fortran Solution

```
do while ( dt > max_temp_error .and. iteration <= max_iterations)
    !$omp paralle1 do
do j=1,columns
    do i=1,rows
        temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_7ast(i-1,j)+ &
                        temperature_last(i,j+1)+temperature_last(i,j-1) )
    enddo
enddo
!$omp end parallel do
dt=0.0
!$omp paralle1 do reduction(max:dt)
do j=1,columns
    do i=1, rows
            dt = max( abs(temperature(i,j) - temperature_1ast(i,j)), dt )
            temperature_1ast(i,j) = temperature(i,j)
        enddo
enddo
!$omp end parallel do
if( mod(iteration,100).eq.0 ) then
    ca11 track_progress(temperature, iteration)
endif
iteration = iteration+1
```


Scaling?

For the solution in the Laplace directory, we found this kind of scaling when running to convergence at 3372 iterations. This is on a clean 128 core node.

| Threads | C (s) | Fortran (s) | Speedup |
| :---: | ---: | ---: | :---: |
| Serial | 21.4 | 20.6 | |
| 2 | 10.8 | 10.3 | 2.0 |
| 4 | 5.4 | 5.2 | 4.0 |
| 8 | 2.7 | 2.6 | 7.9 |
| 16 | 1.4 | 1.4 | 14.7 |
| 32 | 0.80 | 0.80 | 25.7 |
| 64 | 0.59 | 0.59 | 34.9 |

The larger version of this problem that we use for the hybrid programming example (10K x 10 K) continues to scale nicely on Bridges EM large memory nodes to 96 cores!

Time for a breather.

Congratulations, you have now learned the OpenMP parallel for/do loop. That is a pretty solid basis for using OpenMP. To recap, you just have to keep an eye out for:

- Dependencies
- Data races
and know how to deal with them using:
- Private variables
- Reductions

