Welcome!

Thank you for joining us today! As we wait for everyone to get settled, we’d like to bring a few things to your attention:

1. This webinar is being recorded. The recording will be available via the Neocortex webinar webpage. Slides will also be made available online.

2. There will be 50 minutes of presentations followed by Q&A. To maintain a quality experience for everyone, please mute your microphone during the presentations.

3. We hope you will participate in this interactive webinar by:
 • Asking questions to our team via the Q&A Zoom feature.
 • These questions will seed the Q&A session in the final 10 minutes.

4. This webinar abides to the Neocortex code of conduct.
Neocortex Code of Conduct

Neocortex has an external code of conduct which represents our commitment to providing an inclusive and harassment-free environment in all interactions regardless of race, age, ethnicity, national origin, language, gender, gender identity, sexual orientation, disability, physical appearance, political views, military service, health status, or religion. The code of conduct extends to all *Neocortex*-related events, services, and interactions.

Code of Conduct: www.cmu.edu/psc/aibd/neocortex/neocortex-code-of-conduct

Contact:
Neocortex ombudspersons:
- Paola A. Buitrago, PSC, Carnegie Mellon University (paola@psc.edu)
- Sergiu Sanielevici, PSC, Carnegie Mellon University (sergiu@psc.edu)
Neocortex Overview and Spring 2023 Call for Proposals

Paola A. Buitrago

Principal Investigator & Project Director, Neocortex
Director, AI and Big Data, Pittsburgh Supercomputing Center
Carnegie Mellon University
University of Pittsburgh

February 28, 2023
Questions We are Addressing Today

1. What is the Neocortex program and what are its goals?
2. What is the innovative hardware a researcher can get access through Neocortex?
3. What type of applications are supported by the Neocortex system?
4. How can I gain access to the Neocortex program?
 • What is the evaluation criteria for proposals submitted to the Neocortex program?
 • What would be expected from a Neocortex researcher?
 • What can I expect as Neocortex researcher?
5. How to get additional information or support from the Neocortex team?
Speakers

Dirk T. VanEssendelft
SDK researcher, Neocortex
HPC, AI, and Data Scientist, NETL

Leighton Wilson
SDK support collaborator, Neocortex
HPC Solutions Engineer, Cerebras

Claire Zhang
ML support collaborator, Neocortex
ML Solutions Engineer, Cerebras

Paola A. Buitrago
Principal Investigator, Neocortex
Director of AI and Big Data, PSC
Questions We are Addressing Today

1. What is the Neocortex program and what are its goals?
2. What is the innovative hardware a researcher can get access through Neocortex?
3. What type of applications are supported by the Neocortex system?
4. How can I gain access to the Neocortex program?
 - What is the evaluation criteria for proposals submitted to the Neocortex program?
 - What would be expected from a Neocortex researcher?
 - What can I expect as Neocortex researcher?
5. How to get additional information or support from the Neocortex team?
The Neocortex Program
NSF Solicitation – 19-587

Advanced Computing Systems and Services: Adapting to the Rapid Evolution of Science and Engineering Research

“The intent of this solicitation is to request proposals from organizations to serve as service providers ... to provide advance cyberinfrastructure (CI) capabilities and/or services ... to support the full range of computational- and data-intensive research across all science and engineering (S&E).”

Two categories:

- **Category I, Capacity Systems:** production computational resources.
- **Category II, Innovative Prototypes/Testbeds:** innovative forward-looking capabilities deploying novel technologies, architectures, usage modes, etc., and exploring new target applications, methods, and paradigms for S&E discoveries.
Context – NSF Award

Acquisition and operation of *Bridges, Bridges-Al, Bridges-2,* and *Neocortex* are made possible by the National Science Foundation:

NSF Award OAC-2005597 ($12.25M awarded to date):

Category II: Unlocking Interactive AI Development for Rapidly Evolving Research

Cerebras and HPE delivered *Neocortex*
Context – Project Goals

Neocortex, Unlocking Interactive AI Development for Rapidly Evolving Research

A new NSF funded advanced computing project with the following goals:

- Deploy *Neocortex* and offer the national open science community revolutionary hardware technology to accelerate AI training at unprecedented levels.
- Explore, support and operate *Neocortex* for 5 years.
- Engage a wide audience and foster adoption of innovative technologies.
Driving Use-Cases

• Transform and accelerate AI-enabled research
• Development of new and more efficient AI algorithms and graph analytics
• Foster greater integration of artificial deep learning with scientific workflows
• Democratize access to game changing compute power
• Explore the potential of a groundbreaking new hardware architecture
• Support research needing large-scale memory (genomics, brain imaging, simulation modeling)
• Augmenting traditional computational science with rapidly-evolving methodologies and technologies
• User-centric and interactive computing modalities
Neocortex System Overview

Cerebras CS-2
- 850,000 cores
- 2.6T transistors
- 40 GB SAM
- 20 PB mem bw

HPE Superdome Flex
- 32 Intel Xeon CPUs
- 24 TB RAM
- 4.5 TB/s mem bw
- 204.8 TB NVMe SSD

16x EDR: 1.6 Tb/s

Maximize training speed using big data
Neocortex main AI accelerator is the Cerebras WSE, an alternative to other accelerators like GPUs.
Questions We are Addressing Today

1. What is the Neocortex program and what are its goals?
2. What is the innovative hardware a researcher can get access through Neocortex?
3. What type of applications are supported by the Neocortex system?
4. How can I gain access to the Neocortex program?
 • What is the evaluation criteria for proposals submitted to the Neocortex program?
 • What would be expected from a Neocortex researcher?
 • What can I expect as Neocortex researcher?
5. How to get additional information or support from the Neocortex team?
Applications Supported by Neocortex – as of February 2023

1. Cerebras modelzoo ML models
2. Models similar to the Cerebras modelzoo models
3. General purpose SDK
4. WFA, WSE Field-equation API
Applications Supported by Neocortex – as of February 2023

15 DL models: BERTx5 (standard, classifier, name entity recognition, summarization, question answering), GPT-2, GPT-3, GPT-J, Linformer, RoBERTa, T5, Transformer, FC-MNIST, 2D Unet.

https://portal.neocortex.psc.edu/docs/models_supported.html
Applications Supported by Neocortex – as of February 2023

ML only!

2
Models similar to the Cerebras modelzoo models

ML models that are a combination of the building blocks used by modelzoo models and/or the layers supported by Cerebras as listed in their documentation.

https://docs.cerebras.net/en/latest/tensorflow-docs/api-rst/tf.html

15 Modelzoo DL models: BERTx5 (standard, classifier, name entity recognition, summarization, question answering), GPT-2, GPT-3, GPT-J, Linformer, RoBERTa, T5, Transformer, FC-MNIST, 2D Unet.

https://portal.neocortex.psc.edu/docs/models_supported.html
Applications Supported by Neocortex – as of February 2023

- Pioneering algorithm coding from scratch.
- Analogous to CUDA for Nvidia GPUs.
- ML kernels cannot be integrated with Pytorch and/or TensorFlow.
- Requires significant commitment.
- Will learn more from Leighton in the upcoming presentation.
WFA: API recently used for advancing CFP simulations at unprecedented resolution and speed (more info).

- Pioneering work - Beta testing of the WFA library.
- Only a few groups would be welcomed.
- Close collaboration with Dirk’s team, PSC, and Cerebras.
- More details in Dirk’s upcoming presentation.
Questions We are Addressing Today

1. What is the Neocortex program and what are its goals?
2. What is the innovative hardware a researcher can get access through Neocortex?
3. What type of applications are supported by the Neocortex system?
4. How can I gain access to the Neocortex program?
 • What is the evaluation criteria for proposals submitted to the Neocortex program?
 • What would be expected from a Neocortex researcher?
 • What can I expect as Neocortex researcher?
5. How to get additional information or support from the Neocortex team?
Spring 2023 Call for Proposals

• All details available in the official webpage: https://www.cmu.edu/psc/aibd/neocortex/2023-03-cfp-spring-2023.html

<table>
<thead>
<tr>
<th>Neocortex Spring 2023 Allocation Submissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Application begins</td>
</tr>
<tr>
<td>Application ends</td>
</tr>
<tr>
<td>Response ends</td>
</tr>
<tr>
<td>Allocation starting date</td>
</tr>
</tbody>
</table>
Open to all U.S.-based university and non-profit researchers.
Offered at no cost for researchers advancing open-science work.
Applications welcomed and processed through EasyChair.
Applications welcomed for a period of 5 weeks.
Applications will be evaluated as they come in. Apply as soon as convenient!
Lightweight application via a short form.
Onboarding meetings will be scheduled to confirm scope of the project and suitability.
Spring 2023 Call for Proposals

• Users expected to be onboarded by mid May.
• Allocations to Neocortex resources and Bridges-2 will be initially granted for a year by default.
• Close collaboration and constant communication between domain projects, PSC, and vendors is expected. Checkpoint sessions every 3 months or so.
• **Feedback and user experiences are expected** to further enrich the project.
• More technical details on the Cerebras servers, the ML frameworks, SDK, WFA, and applications supported, in the second part of the webinar to be presented by Cerebras and NETL collaborators.
Questions We are Addressing Today

1. What is the Neocortex program and what are its goals?
2. What is the innovative hardware a researcher can get access through Neocortex?
3. What type of applications are supported by the Neocortex system?
4. How can I gain access to the Neocortex program?
 - What is the evaluation criteria for proposals submitted to the Neocortex program?
 - What would be expected from a Neocortex researcher?
 - What can I expect as Neocortex researcher?
5. How to get additional information or support from the Neocortex team?
To Learn More and Participate

<table>
<thead>
<tr>
<th>Action</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch the Neocortex website for updates!</td>
<td>https://www.cmu.edu/psc/aibd/neocortex/</td>
</tr>
<tr>
<td>Join the neocortex-updates list</td>
<td>https://www.cmu.edu/psc/aibd/neocortex/newsletter-sign-up.html</td>
</tr>
<tr>
<td>Apply to upcoming CFP</td>
<td>https://www.cmu.edu/psc/aibd/neocortex/2023-03-cfp-spring-2023.html</td>
</tr>
<tr>
<td>Contact us with additional questions, input, or requests</td>
<td>neocortex@psc.edu</td>
</tr>
</tbody>
</table>
To Learn More and Participate

<table>
<thead>
<tr>
<th>Task</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch the Neocortex website for updates!</td>
<td>https://www.cmu.edu/psc/aibd/neocortex/</td>
</tr>
<tr>
<td>Join the neocortex-updates list</td>
<td>https://www.cmu.edu/psc/aibd/neocortex/newsletter-sign-up.html</td>
</tr>
<tr>
<td>Apply to upcoming CFP</td>
<td>https://www.cmu.edu/psc/aibd/neocortex/2023-03-cfp-spring-2023.html</td>
</tr>
<tr>
<td>Contact us with additional questions, input, or requests</td>
<td>neocortex@psc.edu</td>
</tr>
</tbody>
</table>
Thank you to all those contributing to Neocortex!
Neocortex Team
Cerebras CS-2: the AI Compute Engine for Neocortex

February 28, 2023
Outline

• CS-2 Overview

• CS-2 for Deep Learning
 • PyTorch and TensorFlow integration
 • Reference implementations, docs, supported layers
 • DL projects of interest with examples

• CS-2 for HPC using the SDK
 • Programming with the Software Development Kit (SDK) and Cerebras Software Language (CSL)
 • Examples of successful HPC projects
 • HPC topics of interest
CS-2 Overview
System Hierarchy

PE → Wafer → CS-2 → Neocortex

Neocortex:
- Networked File Storage
- Superdome Flex
 - Chief
 - Input Workers
Cerebras Wafer Scale Engine (WSE-2)

The Most Powerful Processor for AI & HPC

850,000 cores optimized for sparse linear algebra
46,225 mm² silicon
2.6 trillion transistors
40 Gigabytes of on-chip memory
20 PByte/s memory bandwidth
220 Pbit/s fabric bandwidth
7nm process technology

Cluster-scale performance in a single chip
Deployment and job execution within Neocortex

- CS-2 is a network-attached accelerator
- Cerebras software runs on CS-2 and on the SuperdomeFlex
 - Chief compiles the code and manages CS-2
 - Input workers read data, run the input pipeline, and stream data to CS-2
- Loss output, summaries, checkpoints are streamed from CS-2 to SuperdomeFlex
- Jobs are managed by slurm
Developer Resources

For ML developers

Cerebras Model Zoo repository
(https://github.com/Cerebras/modelzoo/tree/original_cerebras_installation)

Cerebras ML Software Documentation
(Original Cerebras Installation sections of
https://docs.cerebras.net/en/latest/index.html)

For HPC developers

Cerebras SDK

please refer to the Original Cerebras Installation version/sections for both the Model Zoo repository and Software Documentation
CS-2 for Deep Learning
Frameworks supported

TensorFlow

Class:

CerebrasEstimator

• Based on TF Estimator, takes over executions after XLA compilation
• TensorFlow 2.2

PyTorch

Python Module:

cerebras.framework.torch

• Based on PyTorch XLA
• Wrappers for Dataloader, Module, Session
• PyTorch 1.11
How do we translate a model into a CS executable?
The Cerebras Software Platform

Cerebras Compiler

Framework

CIR-H

Kernel graph

Execution plan

Executable

Feature Support

Extract graph representation of model from framework and match operations with kernel library
The Cerebras Software Platform

Cerebras Compiler

Framework → CIR-H → Kernel graph → Execution plan → Executable

Hardware Placement
Assign kernels to regions of fabric and create executable to be run by CS-2.
The Cerebras Software Platform

Program a cluster-scale resource with the ease of a single node
ML Software Key Features

Network Architectures
- Transformers (TF and PyT)
 - E.g., BERT, RoBERTa, AIAYN, T5, GPT
- Multi-layer Perceptrons (MLP) (TF and PyT)
- Experimental (TF only)
 - UNet - limited functionality

General features
- Supports Train, Eval
- Trained weights in standard TF and PyT formats
- Monitor your runs with TensorBoard
- Multi-replica support for smaller models

* Please refer to the Original Cerebras Installation Model Zoo repository for architectures we support.
* We recommend starting from the Model Zoo implementations to build your models.
Topics of interest for ML applications

- Neocortex is best suited for running Transformer style models such as BERT, GPT, Transformer, T5, and ViT.

- Transformer style models cover a wide range of data modeling tasks such as:
 - Sequence classification - sentiment analysis, molecule properties
 - Sequence annotation - extractive summarization, protein binding site identification
 - Sequence generation - abstractive summarization, candidate drug generation
 - Sequence to sequence mapping - Natural language translation, code translation
 - Representation learning for biological sequences (genome, epigenome, protein)

- Many data modeling task that historically used other architectures can and have been reframed to leverage the transformer architecture. Some examples are:
 - Image classification: CNN → BERT(ViT)
 - Autoregressive sequence/time-series modeling: RNN → GPT
 - Graph modeling: GNN → BERT with adjacency attention mask
Example Projects/ Models

- GSK: new sequence modeling for genetic medicine
 - “Epigenomic language models powered by Cerebras” Trotter, 2021

- PubMedBERT
 - “Domain-specific language model pretraining for biomedical NLP” Gu, 2021

- AntiBERTa
 - “Deciphering the language of antibodies using self-supervised learning” Leem, 2021

- TAPE
 - “Evaluating protein transfer learning with TAPE” Rao, 2019

- SMILES-BERT
 - “SMILES-BERT: Large Scale Unsupervised Pre-Training for Molecular Property Prediction” Wang, 2019
Resources

Documentation: docs.cerebras.net

Cerebras Model Zoo:
github.com/Cerebras/modelzoo/tree/original_cerebras_installation

Explore the Documentation

This documentation will help you program for the CS system. It covers both basic and advanced topics. Use these docs to accelerate your machine learning training and inference applications on the CS system. Here you will find getting started guides, quickstarts, tutorials, code examples, release notes, and more.

Learn Cerebras basics

Big picture view of a CS system

How Cerebras works
Start with this big picture before you dive into your ML development with Cerebras system.

Programming model and the compiler
Get to know how Cerebras separates compile vs execution, and the compiler flow from framework to the executable.

The Cerebras CPU cluster
How a Cerebras multi-worker configuration differs from a GPU multi-worker configuration.

ML workflow on Cerebras
Cerebras ML workflow

Please check out the Original Cerebras Installation version/sections.
CS-2 for HPC via SDK
Does your application **scale poorly across nodes?**

Examples: FFT-based solvers, particle simulators, non-linear problems with iterative solvers

The Cerebras solution:

- The WSE-2 has a fabric that is **high bandwidth** and **low-latency**, allowing for excellent parallel efficiency for non-linear and highly communicative codes.

- The CS-2 system has **850k cores** and can fit problems on an individual chip that take tens to hundreds of traditional small compute nodes.
 - Each core is individually programmable.
Is your application constrained by data access?

Examples: Stencil based PDE solvers, linear algebra solvers, signal processing, sparse tensor math, big data analysis

The Cerebras solution:

• The CS-2 system has **40 GB of SRAM** uniformly distributed across the wafer that is **1 cycle** away from the processing element
 • Speeds up memory access by orders of magnitude
• The CS-2 system is capable of **1.2 Tb/s bandwidth** onto the chip
 • Stream data onto the chip as required
Cerebras SDK

Cerebras SDK is a general-purpose parallel-computing platform and API allowing software developers to write custom programs ("kernels") for Cerebras systems.

Language
- CSL: Cerebras Software Language
- Host APIs with Python

Libraries
- Optimized primitives

Tools
- Simulator
- Debugger
- Performance profiler
- Visualization
CS-2 Dataflow Programming

To the programmer, the CS-2 appears as a logical 2D array of 850k individually programmable Processing Elements (PEs)

Flexible compute
- General purpose CPU
- 16- and 32-bit native FP and integer data types
- Tasks triggered by the arrival of data packets

Flexible communication
- Programmable router
- Static or dynamic routes (aka colors)
- Data packets (aka wavelets) passed between PEs
- 1 cycle for PE-to-PE communication

Fast memory
- 40GB on-chip SRAM
- Data and instructions
- 1 cycle read/write
From a Programmer’s Perspective

Host CPU(s): Python
- Loads program onto simulator or CS-2 system
- Streams in/out data from one or more workers
- Reads/writes device memory

Device: CSL
- Target software simulator or CS-2
- CSL programs run on groups of cores on the WSE, specified by programmer
- Executes dataflow programs

![Diagram](image-url)
CSL: Language Basics

- Types
- Functions
- Control structures
- Structs/Unions/Enums
- Comptime

Straight from C (via Zig)

- Builtins
- Module system
- Params
- Tasks
- Data Structure Descriptors
- Layout specification

CSL specific

Used for writing device kernel code

Familiar to C/C++/HPC programmers
Simulation Debug Tools
Documentation for Developing with CSL

This is the documentation for developing kernels for Cerebras system. Here you will find getting started guides, quickstarts, tutorials, code examples, release notes, and more.

Start Here
Computing with Cerebras
A conceptual, "mental model" view.

Quickstart
Compile and run
Quickstart with a single PE or multiple PEs.

Kernel Development Flow
Steps to develop your kernel
Define layout, assign code to PE and configure routes and colors.

Working with Code Samples
Learn how to run the code samples
A glimpse into the run script.

Program the WSE
CSL examples
Manipulate sparse tensors, configure fabric switches and more.

Debug
Learn how to use the debugger
Trace the instructions, monitor the tasks at a specific PE and trace wavelets.

SDK Documentation

Search the docs

- SDK Release Notes
- Documentation Updates

- **START HERE**
 - A Conceptual View
 - Kernel Development Flow

- **QUICKSTART**
 - Installation and Setup
 - Quickstart

- **DEVELOPMENT GUIDES**
 - Working With Code Samples
 - CSL Code Examples
 - CSL Language Guide

- **DEBUGGING**
 - Debugging Guide
 - Route Visualizer

- **API REFERENCE**
 - SDK API Reference

- **Using CSL**

© 2022 Cerebras Systems Inc. All Rights Reserved
Examples Included in the SDK

- Basic tasks and colors
- Multiple source files
- Multi-PE kernel
- Basic parameters
- Wavelet-triggered Tasks
- Arrays and Pointers
- Sparse Tensors
- Memory DSDs
- Fabric DSDs
- Reduction

- Basic Branches
- Initializers
- Modules
- Loops
- Kernel Parameterization
- Fabric Switches
- GEMV
- FFT
- Stencil (Finite Differences)
- Shift-Add Multiply
Accelerated energy research at TotalEnergies

Objective: Enable order-of-magnitude speedups on a wide range of simulations: batteries, biofuels, wind flows, drillings, and CO2 storage

Challenge: Participate in Total study to evaluate hardware architectures, using finite difference seismic modelling code as a benchmark

Outcome: Cerebras CS-2 system outperformed a A100 AI GPU by >200X using code written in the Cerebras Software Language (CSL). System now installed and running at customer facility in Houston, TX

“We count on the CS-2 system to boost our multi-energy research and give our research ‘athletes’ that extra competitive advantage.”

Dr. Vincent Saubestre, CEO and President, TotalEnergies Research & Technology USA

Mathias Jacquelin, Mauricio Araya-Polo, Jie Meng, “Massively Scalable Stencil Algorithm”
Topics of interest for HPC applications

• Structured grid based PDE and ODE solvers
• Dense linear algebra
• Sparse linear algebra
• Particle methods with regular communication
• Monte Carlo type problems that can fill the wafer
• Towards development of HPL, HPCG type benchmarks
• Custom ML kernels
Recap

- CS-2 is a dense and powerful single system, powered by 1 enormous chip
 - Cluster-scale compute on a single device => good fit for large DL models
 - 40GB SRAM with massive memory bandwidth => good fit for sparse problems

- CS-2 for Deep Learning
 - Leveraging TensorFlow and PyTorch frontends
 - No low-level programming required
 - Cerebras Software takes care of distributing computations across 850,000 cores

- CS-2 for HPC via SDK
 - Use CSL language for low-level programming on the wafer
 - Users decide how to distribute the computations
 - Cannot be integrated with TensorFlow/ PyTorch workloads

- Next: CS-2 for field equations via NETL’s WFA
Thank you!

https://cerebras.net/
Using the WFA for Scientific Computing on the WSE

Dirk Van Essendelft*

*dirk.vanessendelft@netl.doe.gov

Neocortex Spring 2023 CFP
February 28, 2023
What is the WFA

DSL for Solving Spatial-Temporal Problems on Structured Grids

Simple Python Front End (like Numpy)

```python
from WSE_FE.WSE_Interface import WSE_Interface
from WSE_FE.WSE_Array import WSE_Array
from WSE_FE.WSE_Loops import WSE_For_Loop
import numpy as np

# Instantiate the WSE Interface
wse = WSE_Interface()

# Define constants
C = 0.1
center = 1.0 - 6.0 * C

# Create the initial temperature field and BC's
T_init = np.ones((102, 102, 102)) * 500.0
T_init[1:-1, 1:-1, 0] = 300.0
T_init[1:-1, 1:-1, -1] = 400.0

# Instantiate the WSE Array objects needed
T_n = WSE_Array(name='T_n', initData=T_init)

# Loop over time
with WSE_Fore_Loop('time_loop', 400000):
    T_n[1:-1, 0, 0] = center * T_n[1:-1, 0, 0] + C * (T_n[2:, 0, 0] + T_n[0:-2, 0, 0]
        + T_n[1:-1, 1, 0] + T_n[1:-1, 0, -1]
        + T_n[1:-1, -1, 0] + T_n[1:-1, 0, 1])

wse.make_WSE(answer=T_n)
```

https://dirk-netl.github.io/WSE_FE/
Near Real Time Scientific Modeling

Exceptionally Fast PDE Solutions On Wafer Scale Engine

CFD Demonstration
Completely on WSE

Several Hundred Times Faster Than Distributed Computing

https://www.youtube.com/watch?v=5ad9f70ORvQ

https://arxiv.org/abs/2209.13768
Seeking Beta Testers for Scientific Computing

Project Guidelines

- **Problem Requirements**
 - Must lay out on a Hex grid (3d or many 2d parallel)
 - Should involve Spatial Locality
 - Should be Data Intense
 - Single Precision, <40GB

- **Problem Examples**
 - Computational Fluid Dynamics (FVM, FDM, FEM, LBM)
 - Structural Mechanics
 - Geomechanics
 - Weather/Climate
 - Materials – Ising Model, Density Functional Theory
 - CNN/RNN inference

- **Project Requirements**
 - Build a Python class that imports the WFA and contains a “Library” to solve your scientific problem
 - Post on a public github

- **What to expect**
 - Development at the high-level Python interface that is similar to Numpy
 - A container (provided by Cerebras) to compile and generate binaries and run on the WSE
 - An unpolished product (Beta level) that will require some hand holding from our team on slack
 - Be prepared for bugs and unpolished documentation
 - Exceptional speed if successful, strong scaling that can't be matched elsewhere