Parallel Computing & Accelerators

John Urbanic
Pittsburgh Supercomputing Center
Parallel Computing Scientist

Purpose of this talk

This is the 50,000 ft. view of the parallel computing landscape. We want to orient you a bit before parachuting you down into the trenches to deal with OpenACC. The plan is that you walk away with a knowledge of not just OpenACC, but also where it fits into the world of High Performance Computing.

FLOPS we need: Climate change analysis

Simulations

- Cloud resolution, quantifying uncertainty, understanding tipping points, etc., will drive climate to exascale platforms
- New math, models, and systems support will be needed

Extreme data

- "Reanalysis" projects need 100x more computing to analyze observations
- Machine learning and other analytics are needed today for petabyte data sets
- Combined simulation/observation will empower policy makers and scientists

Exascale combustion simulations

- Goal: 50% improvement in engine efficiency
- Center for Exascale Simulation of Combustion in Turbulence (ExaCT)
 - Combines M&S and experimentation
 - Uses new algorithms, programming models, and computer science

The list is long, and growing.

- Molecular-scale Processes: atmospheric aerosol simulations
- Al-Enhanced Science: predicting disruptions in tokomak fusion reactors
- Hypersonic Flight

- Modeling Thermonuclear X-ray Bursts: 3D simulations of a neutron star surface or supernovae
- Quantum Materials Engineering: electrical conductivity photovoltaic and plasmonic devices
- Physics of Fundamental Particles: mass estimates of the bottom quark
- Digital Cells

These and others are in an appendix at the end of our Outro To Parallel Computing talk.

And many of you doubtless brought your own immediate research concerns. Great!

Welcome to The Year of Exascale!

exa = 10^{18} = 1,000,000,000,000,000,000 = quintillion 64-bit precision floating point operations per second

23,899,33 Cray Ref Stormson 2004 (425 Telops)

Revised and expanded

in very little time. Performing a billion operations, on the other hand, could take minutes or hours, though it's still possible provided you are patient. Performing a trillion operations, however, will basically take forever. So a fair rule of thumb is that the calculations we can perform on a computer are ones that can be done with *about a billion operations or less*.

Mark Newman

Copyrighted Material

Where are those 10 or 12 orders of magnitude?

How do we get there from here?

BTW, that's a bigger gap than

VS.

IBM 709 12 kiloflops

Moore's Law abandoned serial programming around 2004

But Moore's Law is only beginning to stumble now.

Intel process technology capabilities

High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2018	2021
Feature Size	90nm	65nm	45nm	32nm	22nm	14nm	10nm	7nm
Integration Capacity (Billions of Transistors)	2	4	8	16	32	64	128	256

Transistor for 90nm Process

Source: Intel

Influenza Virus

Source: CDC

And at end of day we keep using getting more transistors.

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

That Power and Clock Inflection Point in 2004... didn't get better.

Not a new problem, just a new scale...

Cray-2 with cooling tower in foreground, circa 1985

And how to get more performance from more transistors with the same power.

RULE OF THUMB

Frequency	Power	Performance			
Reduction	Reduction	Reduction			
15%	45%	10%			

Area = :

Voltage = 1

Freq = 1

Power = 1

Perf = 1

DUAL CORE

Area = 2

Voltage = 0.85

Freq = 0.85

Power = 1

Perf = ~ 1.8

Parallel Computing

One woman can make a baby in 9 months.

Can 9 women make a baby in 1 month?

But 9 women can make 9 babies in 9 months.

First two bullets are Brook's Law. From *The Mythical Man-Month*.

Prototypical Application: Serial Weather Model

First Parallel Weather Modeling Algorithm: Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model: Shared Memory (OpenMP)

Four meteorologists in the

Weather Model: Distributed Memory (MPI)

50 meteorologists using a telegraph.

Weather Model: Accelerator (OpenACC)

1 meteorologists coordinating 1000 math savants using tin cans and a string.

The pieces fit like this...

Top 10 Systems as of June 2023

9

10

Tiahne-2A

China

#	Computer	Site	Manufacturer	CPU Interconnect [Accelerator]	Cores	Rmax (Pflops)	Rpeak (Pflops)	Power (MW)
1	Frontier	Oak Ridge National Laboratory United States	НРЕ	AMD EPYC 64C 2GHz Slingshot-11 AMD Instinct MI250X	8,699,904	1194	1692	22.7
2	Fugaku	RIKEN Center for Computational Science Japan	Fujitsu	ARM 8.2A+ 48C 2.2GHz Torus Fusion Interconnect	7,630,072	442	537	29.9
3	LUMI	EuroHPC Finland	НРЕ	AMD EPYC 64C 2GHz Slingshot-11 AMD Instinct MI250X	2,220,288	309	428	6.0
4	Leonardo	EuroHPC Italy	Atos	Intel Xeon 8358 32C 2.6GHz Infiniband HDR NVIDIA A100	1,824,768	238	304	7.4
5	Summit	Oak Ridge National Laboratory United States	IBM	Power9 22C 3.0 GHz Dual-rail Infiniband EDR NVIDIA V100	2,414,592	148	200	10.1
6	Sierra	Lawrence Livermore National Laboratory United States	IBM	Power9 3.1 GHz 22C Infiniband EDR NVIDIA V100	1,572,480	95	125	7.4
7	Sunway TaihuLight	National Super Computer Center in Wuxi China	NRCPC	Sunway SW26010 260C 1.45GHz Sunway Interconnect	10,649,600	93	125	15.3
8	Perlmutter	NERSC United States	НРЕ	EPYC 64C 2.45 GHz Slingshot-10 NV/DIA 4100	761,304	70	93	2.6
	5	00 Inspur TS10000	, Xeon Gold 6130	16C 2.1GHz, NVIDIA Tesla	40,320	1.87	3.52	

2.6

18.4

101

V100, 25G Ethernet, Inspur Selene 79 Internet Service P

The word is *Heterogeneous*

And it's not just supercomputers. It's on your desk, and in your phone.

How much of this can you program?

We can do better. We have a role model.

- We hope to "simulate" a human brain in real time on one of these Exascale platforms with about 1 - 10 Exaflop/s and 4 PB of memory
- These newest Exascale computers use 20+ MW
- The human brain runs at 20W
- Our brain is a million times more power efficient!

Why you should be (extra) motivated.

- This parallel computing thing is no fad.
- The laws of physics are drawing this roadmap.
- If you get on board (the right bus), you can ride this trend for a long, exciting trip.

Let's learn how to use these things!