Parallel Computing 8 Accelerators

John Urbanic

Pittsburgh Supercomputing Center Parallel Computing Scientist

Purpose of this talk

This is the $50,000 \mathrm{ft}$. view of the parallel computing landscape. We want to orient you a bit before parachuting you down into the trenches to deal with OpenACC. The plan is that you walk away with a knowledge of not just OpenACC, but also where it fits into the world of High Performance Computing.

FLOPS we need: Climate change analysis

Simulations

- Cloud resolution, quantifying uncertainty, understanding tipping points, etc., will drive climate to exascale platforms
- New math, models, and systems support will be needed

Extreme data

- "Reanalysis" projects need $100 \times$ more computing to analyze observations
- Machine learning and other analytics are needed today for petabyte data sets
- Combined simulation/observation will empower policy makers and scientists

Exascale combustion simulations

- Goal: 50% improvement in engine efficiency
- Center for Exascale Simulation of Combustion in Turbulence (ExaCT)
- Combines M\&S and experimentation
- Uses new algorithms, programming models, and computer science

The list is long, and growing.

- Molecular-scale Processes: atmospheric aerosol simulations
- AI-Enhanced Science: predicting disruptions in tokomak fusion reactors
- Hypersonic Flight

- Modeling Thermonuclear X-ray Bursts: 3D simulations of a neutron star surface or supernovae
- Quantum Materials Engineering: electrical conductivity photovoltaic and plasmonic devices
- Physics of Fundamental Particles: mass estimates of the bottom quark
- Digital Cells

These and others are in an appendix at the end of our Outro To Parallel Computing talk. And many of you doubtless brought your own immediate research concerns. Great!

Welcome to The Year of Exascale!

$$
\begin{aligned}
& \text { exa }=10^{18}=1,000,000,000,000,000,000=\text { quintillion } \\
& 64 \text {-bit precision floating point operations per second }
\end{aligned}
$$

COMPUTATIONAL PHYSICS

Where are those 10 or 12 orders of magnitude?

How do we get there from here?

BTW, that's a
bigger gap than

Moore's Law abandoned serial programming around 2004

But Moore's Law is only beginning to stumble now.

Intel process technology capabilities

| High Volume
 Manufacturing | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2018 | 2021 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature Size | 90 nm | 65 nm | 45 nm | 32 nm | 22 nm | 14 nm | 10 nm | 7 nm |
| Integration Capacity
 (Billions of
 Transistors) | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |

And at end of day we keep using getting more transistors.
Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000

50,000

1,000

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count
Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under

That Power and Clock Inflection Point in 2004...

 didn't get better.

Fun fact: At 100+ Watts and $<1 \mathrm{~V}$, currents are beginning to exceed 100A at the point

Not a new problem, just a new scale...

Cray-2 with cooling tower in foreground, circa 1985

And how to get more performance from more transistors with the same power.

RULE OF THUMB

A 15\%		Frequency	Power	Performance
Reduction		Reduction	Reduction	Reduction
In Voltage				
Yields		15%	45%	10%

SINGLE CORE

Voltage $=1$
Freq $=1$
Power = 1
Perf = 1

DUAL CORE

Area $=2$
Voltage $=0.85$
Freq $=0.85$
Power = 1
Perf = ~1.8

Parallel Computing

One woman can make a baby in 9 months.

Can 9 women make a baby in 1 month?

But 9 women can make 9 babies in 9 months.

First two bullets are Brook's Law. From The Mythical Man-Month

A must-read for serious project programmers that includes many other classics such as:
"What one programmer can do in one month, two programmers can do in two months."

Prototypical Application:

 Serial Weather Model

First Parallel Weather Modeling Algorithm: Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model: Shared Memory (OpenMP)

Four meteorologists in ti

$$
\begin{aligned}
& \text { fforagma omp parallel Eor } \\
& \text { for (i=1; } 1 \&=n ; 1+r) \\
& \qquad a[1]=b[1]+c[1] ;
\end{aligned}
$$

Weather Model: Distributed Memory


```
-
```


,
GIJIP! Barrier (MPJ_COMN_WORDD, errcode)

```


50 meteorologists using a telegraph.

\section*{Weather Model: Accelerator (OpenACC)}


1 meteorologists coordinating 1000 math savants using tin cans and a string.

The pieces fit like this...


Top 10 Systems as of June 2023
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# & Computer & Site & Manufacturer & \begin{tabular}{l}
CPU \\
Interconnect [Accelerator]
\end{tabular} & Cores & \[
\begin{gathered}
\text { Rmax } \\
\text { (Pflops) }
\end{gathered}
\] & \begin{tabular}{l}
Rpeak \\
(Pflops)
\end{tabular} & Power (MW) \\
\hline 1 & Frontier & Oak Ridge National Laboratory United States & HPE & \begin{tabular}{l}
AMD EPYC 64C 2GHz \\
Slingshot-11 \\
AMD Instinct MI250X
\end{tabular} & 8,699,904 & 1194 & 1692 & 22.7 \\
\hline 2 & Fugaku & RIKEN Center for Computational Science Japan & Fujitsu & \begin{tabular}{l}
ARM \(8.2 \mathrm{~A}+48 \mathrm{C} 2.2 \mathrm{GHz}\) \\
Torus Fusion Interconnect
\end{tabular} & 7,630,072 & 442 & 537 & 29.9 \\
\hline 3 & LUMI & \begin{tabular}{l}
EuroHPC \\
Finland
\end{tabular} & HPE & \begin{tabular}{l}
AMD EPYC 64C 2GHz \\
Slingshot-11 \\
AMD Instinct MI250X
\end{tabular} & 2,220,288 & 309 & 428 & 6.0 \\
\hline 4 & Leonardo & EuroHPC Italy & Atos & Intel Xeon 8358 32C 2.6 GHz Infiniband HDR NVIDIA A100 & 1,824,768 & 238 & 304 & 7.4 \\
\hline 5 & Summit & Oak Ridge National Laboratory United States & IBM & \begin{tabular}{l}
Power9 22C 3.0 GHz \\
Dual-rail Infiniband EDR NVIDIA V100
\end{tabular} & 2,414,592 & 148 & 200 & 10.1 \\
\hline 6 & Sierra & Lawrence Livermore National Laboratory United States & IBM & Power9 3.1 GHz 22C Infiniband EDR NVIDIA V100 & 1,572,480 & 95 & 125 & 7.4 \\
\hline 7 & Sunway TaihuLight & National Super Computer Center in Wuxi China & NRCPC & Sunway SW26010 260C 1.45GHz Sunway Interconnect & 10,649,600 & 93 & 125 & 15.3 \\
\hline 8 & Perlmutter & NERSC United States & HPE & \begin{tabular}{l}
EPYC 64C 2.45 GHz \\
Slingshot-10 NIVINIA 410 n
\end{tabular} & 761,304 & 70 & 93 & 2.6 \\
\hline 9 & Selene & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{500 Inspur TS10000, Xeon Gold 6130 16C 2 V100, 25G Ethernet, Inspur Internet Service \(P\)}} & \multirow[t]{2}{*}{40,320} & \multirow[t]{2}{*}{1.87} & \begin{tabular}{l|l|}
\hline 3.52 & 79 \\
\hline
\end{tabular} & 2.6 \\
\hline 10 & Tiahne-2A & & & & & & 101 & 18.4 \\
\hline
\end{tabular}

\section*{The word is Heterogeneous}

And it's not just supercomputers. It's on your desk, and in your phone.


How much of this can you program?

\section*{We can do better. We have a role model.}
- We hope to "simulate" a human brain in real time on one of these Exascale platforms with about 1-10 Exaflop/s and 4PB of memory
- These newest Exascale computers use \(20+\) MW
- The human brain runs at 20W
- Our brain is a million times more power efficient!


\section*{Why you should be (extra) motivated.}
- This parallel computing thing is no fad.
- The laws of physics are drawing this roadmap.
- If you get on board (the right bus), you can ride this trend for a long, exciting trip.

Let's learn how to use these things!```

