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Motivations

cPINN, XPINN: PINN + Domain Decomposition

cPINNs: A Jagtap, E Kharazmi, GE Karniadakis, CMAME 365
(2020) 113028
XPINNs: A Jagtap, GE Karniadakis,CiCP 28 (5), 2002-2041, 2020
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Physics-Informed Neural Networks: Recap
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Physics-Informed Neural Networks

PINN Limitations:

1 Large training time (Domain decomposition)

2 Due to high-dimensional non-convex optimization problem,
the accuracy of the method suffers.
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Physics-Informed Neural Networks: Profiling

Viscous Burger’s equation:
ut + uux = νuxx , x ∈ R, t > 0 with IC u(x , 0) = − sin(πx) and
BCs u(t, 1) = u(t,−1) = 0.

Reverse-mode AD: Graph Traversal: O(|E |+ |V |)
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Domain Decomposition based PINNs
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Domain Decomposition based PINNs

Advantages

1 Parallelization capacity : The partial independence of
individual PINNs in decomposed domains can be further
employed to implement cPINN in a parallelized algorithm.

2 Representation capacity : Due to deployment of individual
network in each sub-domain by the proposed cPINN method,
the representation capacity of the network increases.

3 Efficient hyper-parameter adjustment : Based on prior
(and sparse) knowledge of the solution regularity in each
sub-domain, the hyper-parameter set of corresponding PINN
is properly adjusted.

4 Reduction of error propagation in the domain : Individual
networks in each sub-domain provide additional information
about the solution using interface conditions, which results in
reduction of error propagation in the neighbouring
sub-domains as well as faster convergence.
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Conservative PINNs (cPINNs) : Applications to
conservation laws

Conservation Laws:
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What Next?

DD strategy for every PDE (not necessarily the conservation
laws).

Also, it will be more efficient if we can do DD in space-time
domain.
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eXtended PINNs (XPINNs)

XPINNs: Interface conditions Avg.Solution continuity =
1

NIq
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+
Additional continuity conditions

Advantages

1 Extension to any differential equation(s)

2 Generalized space-time domain decomposition

3 Simple interface conditions
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Parallel Implementation

cPINN Loss

L = LD + LF + Lf + Lc

XPINN Loss

L = LD + LF + LFi
+ Lc

LD : Volume term - Concurrent evaluation
LF : Volume term - Concurrent evaluation
Lf : Surface term - Communication bound
LFi

: Surface term - Communication bound
Lc : Surface term - Communication bound
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Parallel Implementation
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cPINN or XPINN parallel approach



Domain Partitioning: 2D Incompressible Navier-Stokes
equations

(u· ∇)u = −∇p +
1

Re
∇2u, in Ω

∇·u = 0, in Ω
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Accuracy of parallel cPINN and XPINN
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Computation vs Communication Time: CPUs
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Computation vs Communication Time: GPUs

18 / 38



Communication: XPINN > cPINN, Why?

NS Equation:

(u · ∇u) = −∇p +
1

Re
∇2u, in Ω

∇ · u = 0, in Ω

cPINN Loss: : F (u) + {u+ − u−}

Flux X-dir Y-dir

Div∗,† u v

Mom. X u2 + p − 1
Re

∂u
∂x uv − 1

Re
∂u
∂y

Mom Y uv − 1
Re

∂v
∂x v2 + p − 1

Re
∂v
∂y

XPINN Loss: : F(u) + {u+ − u−}
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Weak Scaling: cPINN and XPINN
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Weak Scaling: More GPUs NVIDIA-ANL Hackathon
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Inverse problem: Steady state heat conduction with
variable conductivity

∂x(K (x , y)Tx) + ∂y (K (x , y)Ty ) = f (x , y)

Domain partitioning

Hyperparameters
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Temperature and Conductivity (T ,K )
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Scaling
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Space-Time partitioning

cPINN vs XPINN partition

# x− # t cPINN time XPINN time
partitions partitions per iter. (s) per iter. (s)

4 1 0.14 -
4 2 - 0.060
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LES Modeling- Ongoing project

Filtred Navier-Stokes equations

∂ũ
∂t

+ ũ · (∇ũ) = −∇p̃ + ν∇2ũ −∇ · τ̃ + F

∇ · ũ = 0,

where τ̃ is subgrid stress and computed using Smagorinsky model
with van Driest damping, which reads

τij = −2(cs(y)∆)2
√

S̃kl S̃kl S̃ij ,

with Driest-damped Smagorinsky constant
cs(y) = c0(1− exp(−y/A))

The corrected subgrid stress term

τij = −2(cs(y)∆)2(1 + δc)

√
S̃kl S̃kl S̃ij ,
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Inverse PINN for cs(y)
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Turbulence Data- JHTDB

Domain Size = 210δν × 1000δν × 210ν

(Nx ,Ny ,Nz) = 17× 256× 34

Viscous Length = 1.0006× 10−3

NT = 64 → 1000
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A-priori testing

The SGS dissipation rate

Π = −τij S̃ij .

An approximate value for cS can be obtained by studying the
ratio between the exact dissipation rate given as

Πe = −τ eij S̃ij ,

and the modeled dissipation rate, which is

ΠS = −τSij (cS)S̃ij .

After rearranging the different terms, we get

cs(y) =

√√√√ ⟨τ eij S̃ij⟩x ,z,t
⟨τSij (cS = 1)S̃ij⟩x ,z,t

,

where the dissipation rates were averaged horizontally and
temporally.
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Result cs(y)

1024 Cubes (Snapshot), 1024 GPUs (Polaris: A100) 1 Node:
4 GPUs

Tested with 2 architectures: Data Parallel and XPINN.
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Fields and prediction error: u

Actual Predicted Point-wise error
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Fields and prediction error: v

Actual Predicted Point-wise error
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Fields and prediction error: w

Actual Predicted Point-wise error

33 / 38



Different architectures vs error
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Scaling for LES
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Conclusions

cPINN is only applicable for conservation laws. However,
application of XPINN is independent of the nature of DEs.

cPINN is more efficient than XPINN if decomposition is
performed in space only.

For transient problems, the communication overhead in
XPINN (compared to cPINN) due to spatial decomposition
will be compensated by partitioning the domain along the
time axis as well.

Weak scaling is achieved for x ∈ {CPUs,GPUs}.
Implementation of XPINN for LES modeling acheives very
good scaling.
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Thank You!
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