Parallel Physics-Informed Neural Networks via Domain Decomposition

Raj Shukla

with A. Jagtap and G. Karniadakis

CRUNCH Group

Division of Applied Mathematics Brown University

Pittsburgh Supercomputing Center

January 25, 2023

1/38

Motivation

Model parallel

cPINN, XPINN: PINN + Domain Decomposition

cPINNs: A Jagtap, E Kharazmi, GE Karniadakis, CMAME 365 (2020) 113028 XPINNs: A Jagtap, GE Karniadakis,CiCP 28 (5), 2002-2041, 2020

- O cPINNs
- 2 XPINNs
- O Parallel Implementations
- LES modeling: Ongoing project

Physics-Informed Neural Networks: Recap

$$\mathcal{L}(\tilde{\Theta}) = \frac{1}{N_u} \sum_{i=1}^{N_u} |u_{\text{target}}^i - u_{\tilde{\Theta}}(x_i^u)|^2 + \frac{1}{N_f} \sum_{i=1}^{N_f} |\mathcal{F}_{\tilde{\Theta}}(x_i^f)|^2,$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ──○へ⊙

5/38

PINN Limitations:

- Large training time (Domain decomposition)
- Oue to high-dimensional non-convex optimization problem, the accuracy of the method suffers.

Physics-Informed Neural Networks: Profiling

Viscous Burger's equation: $u_t + uu_x = \nu u_{xx}, x \in \mathbb{R}, t > 0$ with IC $u(x, 0) = -\sin(\pi x)$ and BCs u(t, 1) = u(t, -1) = 0.

Reverse-mode AD: Graph Traversal: O(|E| + |V|)

Domain Decomposition based PINNs

Domain Decomposition based PINNs

Advantages

- Parallelization capacity : The partial independence of individual PINNs in decomposed domains can be further employed to implement cPINN in a parallelized algorithm.
- Representation capacity : Due to deployment of individual network in each sub-domain by the proposed cPINN method, the representation capacity of the network increases.
- Efficient hyper-parameter adjustment : Based on prior (and sparse) knowledge of the solution regularity in each sub-domain, the hyper-parameter set of corresponding PINN is properly adjusted.
- Reduction of error propagation in the domain : Individual networks in each sub-domain provide additional information about the solution using interface conditions, which results in reduction of error propagation in the neighbouring sub-domains as well as faster convergence.

Conservative PINNs (cPINNs) : Applications to conservation laws

Subdomain 1 Subdomain 2

(a)

Conservation Laws:

Subdomain 1

Subdomain 2

<ロ> (四) (四) (三) (三) (三) (三)

(b)

- DD strategy for every PDE (not necessarily the conservation laws).
- Also, it will be more efficient if we can do DD in space-time domain.

eXtended PINNs (XPINNs)

XPINNs: Interface conditions Avg.Solution continuity = $\frac{1}{N_{l_q}} \sum_{i=1}^{N_{l_q}} \left| u_q(\mathbf{x}_{l_q}^i) - \left\{ \left\{ u(\mathbf{x}_{l_q}^i) \right\} \right\} \right|^2$ Residual continuity = $\frac{1}{N_{l_q}} \sum_{i=1}^{N_{l_q}} \left| \mathcal{R}_q(u(\mathbf{x}_{l_q}^i)) - \mathcal{R}_{q^+}(u(\mathbf{x}_{l_q}^i)) \right|^2$ +
Additional continuity conditions

eXtended PINNs (XPINNs)

XPINNs: Interface conditions Avg.Solution continuity = $\frac{1}{N_{l_q}} \sum_{i=1}^{N_{l_q}} \left| u_q(\mathbf{x}_{l_q}^i) - \left\{ \left\{ u(\mathbf{x}_{l_q}^i) \right\} \right\} \right|^2$ Residual continuity = $\frac{1}{N_{l_q}} \sum_{i=1}^{N_{l_q}} \left| \mathcal{R}_q(u(\mathbf{x}_{l_q}^i)) - \mathcal{R}_{q^+}(u(\mathbf{x}_{l_q}^i)) \right|^2$ +
Additional continuity conditions

Advantages

- Extension to any differential equation(s)
- **@** Generalized space-time domain decomposition
- **③** Simple interface conditions

Parallel Implementation

cPINN Loss

$$\mathcal{L} = \mathcal{L}_D + \mathcal{L}_F + \mathcal{L}_f + \mathcal{L}_c$$

XPINN Loss

$$\mathcal{L} = \mathcal{L}_D + \mathcal{L}_F + \mathcal{L}_{F_i} + \mathcal{L}_c$$

 $\begin{array}{l} \mathcal{L}_{D} : \text{Volume term - Concurrent evaluation} \\ \mathcal{L}_{F} : \text{Volume term - Concurrent evaluation} \\ \mathcal{L}_{f} : \text{Surface term - Communication bound} \\ \mathcal{L}_{F_{i}} : \text{Surface term - Communication bound} \\ \mathcal{L}_{c} : \text{Surface term - Communication bound} \\ \end{array}$

Parallel Implementation

cPINN or XPINN parallel approach

≪ ≣⇒

Domain Partitioning: 2D Incompressible Navier-Stokes equations

$$(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{Re}\nabla^2 \mathbf{u}, \text{ in } \Omega$$

 $\nabla \cdot \mathbf{u} = 0, \text{ in } \Omega$

▲ Residual Points • Data Points ■ Interface Points

15 / 38

Accuracy of parallel cPINN and XPINN

<ロト < 部 ト < 言 ト く 言 ト 言 の Q () 16 / 38

Computation vs Communication Time: CPUs

Figure 2: Computation and communication time for (a) cPINN and (b) xPINN with $N_f = 100$ and $N_{f_i} = 20$

Computation vs Communication Time: GPUs

Runtime on Nodes, GPU Implementation

Figure 3: Computation and communication time for (a) cPINN and (b) xPINN with $N_f = 4000$ and $N_{f_i} = 200$

Communication: XPINN > cPINN, Why?

NS Equation:

$$(\boldsymbol{u} \cdot \nabla \boldsymbol{u}) = -\nabla p + rac{1}{Re} \nabla^2 \boldsymbol{u}, \quad \text{in } \Omega$$

 $\nabla \cdot \boldsymbol{u} = 0, \quad \text{in } \Omega$

cPINN Loss: : $F(u) + \{u^+ - u^-\}$

Flux	X-dir	Y-dir
Div*,†	и	V
Mom. X	$u^2 + p - \frac{1}{Re} \frac{\partial u}{\partial x}$	$uv - \frac{1}{Re} \frac{\partial u}{\partial y}$
Mom Y	$uv - rac{1}{Re}rac{\partial v}{\partial x}$	$v^2 + p - \frac{1}{Re} \frac{\partial v}{\partial y}$

XPINN Loss: : $\mathcal{F}(u) + \{u^+ - u^-\}$

Weak Scaling: cPINN and XPINN

Figure 5: Weak scaling for the cPINN and the XPINN methods.

Inverse problem: Steady state heat conduction with variable conductivity

$$\partial_x(K(x,y)T_x) + \partial_y(K(x,y)T_y) = f(x,y)$$

Domain partitioning

Hyperparameters

Subdomain number	1	2	3	4	5	6	7	8	9	10
# Residual points	3000	4000	5000	4000	3000	4000	800	3000	5000	4000
Adaptive Activation function	tanh	sin	cos	tanh	sin	cos	tanh	sin	cos	tanh

Temperature and Conductivity (T, K)

Space-Time partitioning

cPINN vs XPINN partition					
# x-	# t	cPINN time	XPINN time		
partitions	partitions	per iter. (s)	per iter. (s)		
4	1	0.14	-		
4	2	-	0.060		

LES Modeling- Ongoing project

Filtred Navier-Stokes equations

$$\frac{\partial \widetilde{\boldsymbol{u}}}{\partial t} + \widetilde{\boldsymbol{u}} \cdot (\nabla \widetilde{\boldsymbol{u}}) = -\nabla \widetilde{\boldsymbol{\rho}} + \nu \nabla^2 \widetilde{\boldsymbol{u}} - \nabla \cdot \widetilde{\boldsymbol{\tau}} + F$$
$$\nabla \cdot \widetilde{\boldsymbol{u}} = 0,$$

where $\widetilde{\tau}$ is subgrid stress and computed using Smagorinsky model with van Driest damping, which reads

$$au_{ij} = -2(c_s(y)\Delta)^2 \sqrt{\widetilde{S_{kl}}\widetilde{S_{kl}}}\widetilde{S_{ij}},$$

with Driest-damped Smagorinsky constant $c_s(y) = c_0(1 - \exp(-y/A))$

The corrected subgrid stress term

$$\tau_{ij} = -2(c_s(y)\Delta)^2(1+\delta_c)\sqrt{\widetilde{S}_{kl}\widetilde{S}_{ij}},$$

Inverse PINN for $c_s(y)$

Turbulence Data- JHTDB

- Domain Size = $210\delta_{\nu} \times 1000\delta_{\nu} \times 210_{\nu}$
- $(N_x, N_y, N_z) = 17 \times 256 \times 34$
- Viscous Length = 1.0006×10^{-3}
- NT = $64 \rightarrow 1000$

A-priori testing

• The SGS dissipation rate

$$\Pi = -\tau_{ij}\tilde{S}_{ij}.$$

• An approximate value for c_S can be obtained by studying the ratio between the exact dissipation rate given as

$$\Pi^e = -\tau^e_{ij}\tilde{S}_{ij},$$

and the modeled dissipation rate, which is

$$\Pi^{S} = -\tau^{S}_{ij}(c_{S})\tilde{S}_{ij}.$$

• After rearranging the different terms, we get

$$c_{s}(y) = \sqrt{rac{\langle au_{ij}^{e} ilde{\mathcal{S}}_{ij}
angle_{ imes,z,t}}{\langle au_{ij}^{S} (c_{S}=1) ilde{\mathcal{S}}_{ij}
angle_{ imes,z,t}}},$$

where the dissipation rates were averaged horizontally and temporally.

Result $c_s(y)$

- 1024 Cubes (Snapshot), 1024 GPUs (Polaris: A100) 1 Node: 4 GPUs
- Tested with 2 architectures: Data Parallel and XPINN.

Fields and prediction error: *u*

Actual

Predicted

Fields and prediction error: v

32 / 38

Fields and prediction error: w

33 / 38

Methods	Rel. L_2 error in u	Rel. L_2 error in v	Rel. L_2 error in w
XPINN 64GPU-64 Time Steps	0.99%	2.6%	2.4%
Data parallel PINN 64GPU-64 Time Steps	6.8%	13.02%	15.44%
XPINN 128GPU-1024 Time Steps	5.87%	11.91%	18.44%
Data parallel PINN 128GPU-1024 Time Steps	3.60%	11.99%	13.23%
XPINN 256GPU-1024 Time Steps	8.02%	5.45%	13.79%
XPINN 1024GPU-1024 Time Steps	1.53%	3.77%	6.10%

- cPINN is only applicable for conservation laws. However, application of XPINN is independent of the nature of DEs.
- cPINN is more efficient than XPINN if decomposition is performed in space only.
- For transient problems, the communication overhead in XPINN (compared to cPINN) due to spatial decomposition will be compensated by partitioning the domain along the time axis as well.
- Weak scaling is achieved for $x \in \{CPUs, GPUs\}$.
- Implementation of XPINN for LES modeling acheives very good scaling.

- OSD/AFOSR MURI
- DARPA CompMods
- DOE PhILMs
- Oak Ridge National Laboratory (ORNL)
- ALLC, ANL
- CCV, Brown University

Thank You!