
 1

Experiences Using Web100 for End-To-End Network Performance Tuning

Thomas J. Hacker

Center for Parallel Computing
University of Michigan

Brian D. Athey

Cell & Developmental Biology
University of Michigan

Jason Sommerfield

Pittsburgh Supercomputing
Center

Email:{hacker, bleu}@umich.edu, jasons@psc.edu

Abstract:
A major source of performance degradation in high-
performance distributed applications has been
attributed to poor end-to-end TCP performance. The
root causes of poor TCP performance are difficult to
isolate and diagnose, and the efficacy of tuning efforts
are often difficult to gauge. This paper describes some
sources of poor TCP performance, and describes a
method to diagnose some of these problems based on a
combination of existing performance tools and the
Web100 tuning package. Using this methodology, the
TCP performance of an application developed for the
Visible Human project is shown to significantly
improve.

1 Introduction

Distributed application performance problems traceable
to poor TCP performance has been identified as a major
source of performance degradation in high-performance
applications [1]. Appropriately provisioned network
infrastructure is essential for providing support for
high-performance networking. However, lack of proper
host tuning and unexpected levels of packet loss can
adversely affect actual end-to-end network performance
to such an extent that it can nullify the benefits of
network infrastructure investments. Most operating
systems are shipped with an overly conservative set of
network tuning parameters that can severely degrade
aggregate TCP performance on wide area networks.
System level effects other than inadequate host tuning
can also affect end-to-end performance. For example,
software bugs in the implementation of TCP on host
systems can contribute to poor TCP performance in
very subtle ways [4, 5].
 Applications can greatly benefit from application and
host tuning efforts targeted at improving aggregate
network performance. Measurements of the Edgewarp
application [2] written for the Visible Human project at
the University of Michigan [3] has shown that the
effects of poor host and application tuning can seriously
degrade bulk transport performance necessary for
delivering images by at least a factor of four.

1.1 Actual TCP Bandwidth Delivered to the
Application

If a host and application are properly tuned, effects
outside the control of the host and application can
adversely affect network performance. Limitations on
TCP bandwidth arise from the effects of packet loss and
packet round trip time on the network path between
hosts. The TCP Slow Start and Congestion Control
algorithms [6] probe the network path between the
sender and receiver to both discover the maximum
available transfer capacity of the network and at the
same time minimize the effects of overloading the
network and causing congestion.
 Mathis [7] described the relationship between the
upper bound of TCP bandwidth BW , packet round trip
time RTT , and packet loss p with the equation

p
C

RTT
MSSBW ≤ (1)

To achieve substantial network performance over a
wide area network that has a relatively large RTT , the
required maximum packet loss rate p must be very
low. The relationship derived by Mathis for the
maximum packet loss rate required to achieve a target
bandwidth is defined by the relationship

2

*

<

RTTBW
MSSp (2)

For example, if the minimum link bandwidth between
two hosts is OC-12 (622 Mbps), and the average round
trip time is 20 msec, the maximum packet loss rate
necessary to achieve 66% of the link speed (411 Mbps)
is approximately 0.00018%, which represents only two
packets lost out of every 100000 packets. Current loss
rates on the commercial Internet backbone [8] are on
the order of 0.1%, which puts a hard upper limit on the
potential bandwidth available to an application.
 Recent work [28] has demonstrated that packet loss
events occur in bursts of consecutive packet losses that
may be due to the drop-tail queuing mechanism in
routers [29]. As the implementation and use of the
Random Early Detection (RED) queuing mechanism

 2

becomes widely deployed across the Internet, this
characteristic may change. Given the burst behavior of
packet loss, obtaining significantly small packet loss
rates can be very difficult. Looking at equation (1), it is
apparent that increasing the MTU from the usual default
value of 1500 bytes to the “jumbo frame” size of 9000
bytes can increase the upper limit on TCP bandwidth by
a factor of six. The recent experience of one of the
authors demonstrated that increasing the MTU by a
factor of three from 1500 to 4470 bytes increased TCP
throughput by a roughly equivalent factor.

1.2 Uncooperative Network Application Behaviors

Application developers have learned to overcome poor
TCP performance with a toolkit of “bad” (from the
network administrator’s perspective) behaviors.
 The first approach usually taken is to abandon the
TCP transport service and to rely on UDP along with a
transport layer written for the application. In this
approach, the application simply transmits packets as
fast as it can. If any packets are lost, the application
either drops them (as in the case of multimedia
applications), or performs packet retransmission on an
application level. This approach is considered “bad” for
several reasons. If an application is injecting UDP
packets into the network at a high rate, the network
infrastructure has no way of signaling back to the
application that the flow is congesting the network and
affecting other users of the network. If the other users
of the network are being “good” and using TCP for
their connection, the UDP stream is able to take an
unfair share of the available network bandwidth [9, p.
246].
 The second approach is to open parallel TCP network
sockets between applications, and utilize software
controlled striping of the data across the sockets, similar
to disk striping [10]. This approach attempts to take
more than the host’s normal share of network
bandwidth from other users of the network to deliver a
higher aggregate network bandwidth to the end hosts.
When there is a significant amount of random packet
loss experienced by the end hosts that is not due to
congestion, parallel TCP sockets can be a fair and
effective method to improve aggregate throughput.

1.3 Tuning Methodology and Other Sources of Poor
Network Performance

Even if the end hosts are properly tuned and the
network packet loss rate is acceptable, other factors
may come into play that can adversely affect network
performance. Each of these factors should be
considered in turn when diagnosing poor network
performance, since a fault at a lower layer will affect
performance in all of the layers above it.

 In the Physical Layer, network cables that are not
within specification limits can be a significant source of
poor performance. A general rule of thumb is that Cat-5
cables are good for 10-BaseT, Cat-5 enhanced cables
(Cat-5e) are good for 100-BaseT, and Cat-6 cables are
good for gigabit Ethernet over copper. Network
adapters are very good at getting around bad cables by
decreasing their throughput or using data-link layer
CRC correction to compensate for a cable that is
operating below specification. An additional source of
problems are host network adapters that are configured
to operate at half-duplex mode rather than full-duplex
mode. If both the network switch and the network
adapters support full-duplex transfers, both sides should
be set to full duplex. If excessive losses are encountered
in full-duplex mode, the cabling between the host and
switch should be tested or replaced.
 In the Data Link Layer, there are several potential
sources of problems. First, if the maximum
transmission unit size (MTU) for packets is set too low,
TCP connections will suffer from poor performance. On
10 and 100 Mb/sec Ethernet, all adapter cards enforce a
1500 byte MTU limit. On some Gigabit Ethernet cards,
the MTU can be set to a “jumbo size” 9000 byte frame.
If we look back at equation (1), it’s apparent that
increasing the MTU size (which is MSS + IP header) by
a factor of six can increase TCP bandwidth by a factor
of six! Unfortunately, most network switches and
routers have a hard 1500 byte MTU limit that cannot be
changed.
 On the host side, another source of problems in the
Data Link Layer is the number of CPU interrupts per
second that are required to service the network adapter.
If a transfer is occurring at gigabit Ethernet speeds, with
a limited 1500 byte MTU, the network adapter and CPU
must service over 83,000 packets per second. If the
network adapter requires service from the CPU for a
small number of packets, the CPU will be overwhelmed
with servicing network adapter interrupts [11]. The
device driver must be configured to permit an
appropriate degree of packet coalescing to take
advantage of the network adapter’s packet buffer.
Additionally, the size of the transmission queue in the
operating system (txqueuelen in Linux) can affect the
packet loss rate on the host. Finally, the PCI slot where
the network adapter card is placed can have an impact
on performance. Some motherboards, such as the Intel
L440GX+[40], have a dual PCI bus architecture, with
specialized PCI slots that are enhanced for specific
functions (such as RAID adapters). If a host contains
RAID adapters along with network adapters, improper
adapter card placement can have an impact on the
aggregate performance of the complete system.
 In the Network Layer, there are several potential
sources of problems. First, excessive packet loss and
round trip time affects TCP bandwidth as described

 3

above in equation (1). Second, there may be network
configuration errors that forces traffic through an
inadequate data link, or that adds unnecessary
additional hops in the path between the hosts. This
problem can be especially difficult to diagnose if IP
encapsulation (such as AAL5 for IP over ATM) occurs
on the network path, since IP based network tools (such
as traceroute) do not have the ability to adequately
penetrate an ATM cloud to diagnose ATM problems.
 In the Transport Layer, mistuned host TCP options
are a very common source of problems. Section 3 of
this paper will describe some of these options and
demonstrate how they can affect TCP performance.
 Finally, the network I/O characteristics of the
application can dramatically impact TCP performance.
Application developers should consider multithreading
their applications to decouple network I/O from
computation. Chapter 6 of Steven’s text [31] is a good
starting point for these efforts.
 The process of examining the network from the
Physical Layer up to the Application Layer represents
an orderly methodology that should be followed when
attempting to diagnose and correct network
performance problems. It is important to note that if a
problem exists at a lower layer in the network, such as
the physical layer, efforts directed at tuning components
at a higher layer to improve performance may not
deliver the expected results. For example, if a physical
link is improperly configured to operate at half duplex,
attempts to increase performance by optimizing the
end-to-end network path may yield little if any results.
Thus, when diagnosing application network
performance problems, it is important to make sure that
tuning opportunities at each layer are explored.

1.4 Web100

The remainder of this paper will discuss experiences
using Web100 for host and application TCP tuning.
Web100 [12] has been used with great success for
identifying and diagnosing the symptoms and causes of
network performance problems and for immediately
measuring the effects of performance tuning. It is hoped
that the work described in this paper will be useful to
application developers and system administrators for
tuning their host systems and improving network and
application performance

2 Related Work

The suite of tools that are currently available for
measurement and diagnosis focus on specific
characteristics of network performance. The tools most
frequently used include ping, traceroute, tcpdump,
pchar, and Iperf. Tools designed for network specialists
include Treno, and TCP testrig. This section will briefly

describe each of these tools and how they are currently
used for diagnosing network performance problems.

2.1 General Tools

The network measurement tools available to application
developers and system administrators are used to
measure physical data-link bandwidth, round trip time,
loss rate, router buffer sizes at each hop in the network,
and measure end-to-end network bandwidth.
 The UNIX ping utility is used to transmit and receive
ICMP Echo packets to a destination host to determine if
the host is reachable, to measure round trip time (RTT),
and to measure packet loss on the network path to the
host. The RTT measurements made by ping can be used
to estimate the “pipe” capacity (capacity = BW * RTT)
of the network between two hosts. Since the test load
put on the network by ping consists of small periodic
ICMP packets, the packet loss rate measured by ping is
not very useful for estimating available TCP bandwidth
using equation (1). The RTT measurement, however, is
useful for deriving the maximum packet loss rate
necessary to support a desired TCP bandwidth in
equation (2).
 Traceroute [16] is used to discover the IP network
route between two hosts and the RTT to each hop in the
network route. Traceroute is used to diagnose routing
problems between hosts.
 Tcpdump [17] is a packet capturing and display utility
that displays all packets on a network segment
connected to a network adapter that is configured in
“promiscuous mode”. Tcpdump is used to debug
network protocols and to passively monitor the network
traffic on a LAN segment.
 Pchar[13] is a tool that measures bandwidth, round
trip time, and router buffer space on every data link on
the network path between two hosts. Pchar is used to
diagnose and identify data link bottlenecks in the
network path between two hosts. Pipechar [14] is
another tool that can be used in conjunction with Pchar
to further examine network bottleneck characteristics.
 Iperf [15] is a tool that measures TCP and UDP
transfer rates between host pairs. Iperf is used to
estimate the maximum network bandwidth available to
an application and to investigate the relationship
between UDP packet injection rate and packet loss on a
network between two hosts.
 There are many projects working on designing and
developing user-level network bandwidth prediction
and management tools. These projects include Network
Weather Service [18], NetLogger [19], and Gloperf
[20]. A complete list of network measurement tools can
be found at the NLANR website
(http://ncne.nlanr.net/software/tools/).

 4

2.2 Network Specialist’s Tools

A small set of end-to-end performance measurement
tools, such as Treno [21] and TCP Testrig [22] are
available, but the use of these tools requires an
extensive knowledge of networking and the
characteristics of TCP along with privileged access to
network devices in the host operating system.
 Treno is a tool that performs a single stream transfer
over a simulated TCP connection to diagnose TCP
performance problems. TCP Testrig is a TCP test
harness that is used in combination with tcptrace, xplot,
tcpdump, and a TCP debugging flowchart [23] to aid
specialists in characterizing and diagnosing TCP tuning
problems.
 Both Treno and TCP Testrig require users to have an
in-depth knowledge of the TCP protocol and network
characteristics to realize maximum results.

3 Web100

An application developer or systems administrator can
make use of a combination of these tools to diagnose
and correct host and application network problems, but
there are inherent problems with the measurement
methodologies within each tool that must be taken into
account.
 First, to make a fair estimate of the characteristics of
the system under measurement, many measurements
and data points must be collected, and systematic
sources of error (such as time of day) need to be taken
into account to eliminate artificial effects. Second, some
of the tools (pchar, for example) require such a long
time to run that the results of the measurement may not
accurately reflect the current state of the system under
measurement. Third, some components of the network
path (such as switched ATM clouds) are resistant to IP
based measurement techniques. Finally, a high degree
of expertise in networking and operating systems is
required to realize the full benefits from the use of these
tools.
 To address these problems, Web100 [12] was
developed by a team at Pittsburgh Supercomputing
Center to provide a window into the characteristics of a
TCP connection for application developers and systems
administrators, and to provide an integrated
performance measurement and diagnosis tool. Web100
provides kernel level access to internal TCP protocol
variables, settings, and performance characteristics for
instantaneous feedback on TCP performance
characteristics.
 The current implementation of Web100 consists of
two major components. The first component is the set
of Linux kernel modifications that export TCP
measurements, variables, and settings through the Linux
‘/proc’ interface. The second major component of

Web100 is the graphical user tool, Diagnostic Tool
Builder (dtb), which provides an interface to the
Web100 TCP instrumentation in the form of numerical
displays, bar graphs, and pie charts of the data values
provided by Web100.

3.1 Web100 and the Visible Human Project

The Visible Human project at the University of
Michigan [3, 24] is a data and visualization intensive
Grid computing project that is designed to deliver
volumetric three-dimensional rendered human anatomy
images along with pedagogical content to students at
teaching hospitals and medical centers across the
nation. The goal of the Visible Human project is to
support the simultaneous access of content through the
Internet by 40 teaching stations for each class session.
There may be many of these training sessions occurring
simultaneously throughout the nation. To deliver these
services interactively, the Visible Human project will
require guaranteed end-to-end network performance
(Quality of Service reservation and provision) along
with high performance data delivery and volume
rendering systems.
 The edgewarp [2, 32] application was developed in
conjunction with the Visible Human project to retrieve
image voxels from a server and to render the resulting
anatomical images. To improve the performance of
edgewarp along with other applications developed to
support the Visible Human Project (VHP), Web100 was
used along with a toolset consisting of ping, traceroute,
pchar, and Iperf to improve the network performance of
VHP data servers and applications [25]. The features of
Web100 that proved to be most useful for tuning were
the real-time measurements of data bytes transmitted,
packet retransmission, receiver TCP window size, and
the display of TCP options negotiated by the sender and
receiver on connection establishment.

4 Using Web100 to Tune End-to-end Performance

To test the ability of the voxel server to deliver voxels
to a client application, a test rig that connects to the
Pittsburgh Supercomputing Center Visible Human
voxel server was developed by the VHP development
group to simulate the retrieval characteristics of the
edgewarp browser. The results of the test rig were
analyzed in combination with the use of Iperf, pchar
and pipechar to determine if there were any network
performance bottlenecks in the network path between
the voxel server at Pittsburgh Supercomputing Center
and the edgewarp client at the University of Michigan
in Ann Arbor.
 Pchar indicated that the structural bottleneck in the
network path between PSC and U-M was a 100 Mb/sec
connection to the edgewarp client at U-M. Traceroute,

 5

pchar and pipechar indicated that the network path
(other than the 100 Mb/sec client connection) consisted
of a combination of OC-12 and Gigabit Ethernet data
links, with approximately 7 network hops between the
client and server. The voxel server ran on a Compaq
ES-40 server with a Netgear GA620 Gigabit Ethernet
network adapter. The edgewarp client was configured
as an Intel 500 Mhz processor Linux host with an Elsa
NVIDIA graphics card used to render edgewarp
graphics on the user’s desktop.
 Once the structural properties of the network path
were determined, the ability of the EdgeWarp server to
deliver data from PSC to U-M was tested. Web100 was
used on the server at PSC to monitor in real-time the
characteristics of the TCP transfer.
 The next section will show the transfer characteristics
of a mistuned Linux host. The following section will
describe the application of the network tuning
methodology described earlier along with the results of
the tuning efforts measured using Web100.

4.1 Characteristics of a Mistuned TCP Receiver

Figure 1 shows the initial Web100 window running on
the PSC VH server. This window provides an interface
to allow a user to select a TCP connection of interest,
and to display and modify TCP variables of interest.

Figure 1. Web100 Main Window

The TCP session between the voxel server at PSC and
the test rig client U-M was selected in the Web100 main
window.

Figure 2. TCP Connection Properties for an
EdgeWarp Data Transfer to a Mistuned Host

Figure 2 shows the TCP connection properties for the
session. Examination of the contents of this window
indicates that several TCP options are disabled. First,
Selective Acknowledgement (SACK) [26], which is
critical for good TCP performance in networks with
packet loss, is disabled. Second, the maximum segment
size (MSS) is very small. Normally over an Ethernet
LAN, the maximum frame size may be up to 1500
bytes. If the TCP MSS is set smaller than the network
and host can actually support, the large number of
packets that must be processed (relative to the
potentially smaller number if MSS is set properly)
creates an additional overhead that can degrade
performance. Finally, timestamps and window scaling
options are not used. These options are described in
RFC1323 [27] and are critical for high-speed TCP
connections.

Figure 3. TCP Transfer Rate and Packet Loss Rate
for EdgeWarp Data Transfer to a Mistuned Host

 6

After examining the TCP connection properties, the
“Data Bytes Transmitted” and “Packets Retransmitted”
options were selected from the right panel in the
Web100 window. Figure three shows the data transfer
rate in units of bytes transmitted per second in the left
window, and the packet loss rate in units of packets
retransmitted per second in the right window.
 The bar graph in the left window of figure 3 indicates
that the data transfer rate is approximately 1.5 MB/sec,
and the right window indicates little or no packet loss.
 The “All variable display” in the left panel of the
main Web100 window shown in figure 1 opens to
display all of the variables maintained by Web100 in
real-time for the duration of the connection. Two items
of interest from this window are the CurrentCwnd and
CurrentRwinRcv variables.
 TCP uses the minimum of the advertised TCP
receiver window size and the calculated congestion
window to determine the maximum number of
outstanding unacknowledged TCP segments allowed in
the network. If the TCP receiver window size is larger
than the pipe capacity of the network link between the
sender and receiver, TCP will attempt to “probe” the
maximum capacity of the network link to carry traffic
by increasing the congestion window (and the
corresponding number of “in flight” unacknowledged
segments) until the network indicates that it is
congested by dropping a packet.
 In Figures 1 through 3, it is apparent that no packets
are being dropped. Using Web100, the congestion
window size (CurrentCwnd) was observed to be very
large compared with the receiver window size. Given
this observation, the number of outstanding segments is
limited by the TCP receiver window size, not the
maximum capacity of the network. Thus, an
inappropriately sized TCP window on the receiver
limits the performance of TCP at this point.

4.2 Tuning the Network and Hosts

Prior to host tuning efforts, the network connection
between the client host adapter and the network switch
was checked to ensure that the Data Link Layer was
operating in full-duplex mode. The maximum
transmission unit size (frame size) on the local network
switch was then checked to ensure that it was
configured to support a maximum transmission unit size
(MTU) of at least 1500 bytes. Finally, the network
cable was checked to verify that it was a Category-5
enhanced cable.
 After the Physical and Data Link characteristics of the
local network infrastructure were validated, the host
tuning problems described in the previous section were
addressed. The client host was tuned to support SACK,
MTU discovery, Timestamps, and Window Scaling.
The TCP maximum and default send and receive socket

buffer, which is used by TCP to determine the receiver
window size, were set to 2 MB. The server was checked
to ensure that these options were enabled.
 Note that setting the TCP send and receive socket
buffer sizes to a large value may possibly have negative
effects on the overall performance of the host in several
instances. First, if the host manages a large number of
TCP connections, (a webserver, for example) each TCP
connection could potentially request 2 MB of socket
buffer. This could easily consume the memory on a host
may have a limited amount of memory. Second, it is
possible to use the TCP socket buffer to control the
maximum TCP bandwidth each connection can use in a
local area network context the by configuring the TCP
send and receive socket buffer sizes to a small
maximum value. With large maximum TCP buffer
sizes, each connection is allowed to fill the local
network between two hosts, and other hosts on the LAN
may experience congestion on the local area network.
In the past, before the deployment of SACK, this could
possibly lead to congestion collapse of the network,
since a large percentage of the packets would be
retransmitted packets. SACK, however, alleviates this
problem.
 Finally, note that with higher network throughput and
a larger number of network packets that must be
processed, the host network adapter on both the sender
and receiver could demand a significantly larger
percentage of the CPU to handle adapter interrupts.
This could adversely affect application performance if
the application is computationally intensive.
 After checking the network, server host and tuning the
edgewarp client host, the transfer test was retried. The
output of tcpdump for the first two packets in the
connection shows immediate results:

/usr/sbin/tcpdump port 8694
Kernel filter, protocol ALL, datagram
packet socket tcpdump: listening on
all devices

19:07:26.172433 eth1 >
spbuild.engin.umich.edu.1088 >
vh.psc.edu.8694: S
1067517561:1067517561(0) win 32758
<mss 1460,sackOK,timestamp 29833739
0,nop,wscale 5> (DF)

19:07:26.192439 eth1 <
vh.psc.edu.8694 >
spbuild.engin.umich.edu.1088: S
1021853801:1021853801(0) ack
1067517562 win 4060 <mss
1460,sackOK,timestamp 1073113995
29833739,nop,wscale 5> (DF)

 7

Both sides of the TCP connection have now agreed on
the use of SACK, timestamps, an MSS value of 1460
bytes, and window scale. Figure 4 shows the effect of
these changes on the TCP connection property
information provided by Web100.

Figure 4. Effects of Host Tuning on TCP Client
Settings

Figure 5 shows the effects of host tuning on the data
transmission rate and on packet loss. The data
transmission rate has increased from 1.5 MB/sec in the
mistuned case to 5 MB/sec. Packet loss is now
occurring, which indicates that the network is
experiencing either congestion or random packet loss.

Figure 5.
TCP Transfer Rate and Packet Loss Rate on Tuned

Host

Recall that the structural bottleneck in the network path
between the server and client is a 100 Mb/sec link. The
reasonable maximum bandwidth one could hope to
achieve on this link would be approximately 80 Mb/sec.
 Figure 6 shows a series of 600 measurements of the
edgewarp test rig prior to and after host tuning. The

results indicate that by simply changing a few TCP
tuning parameters on the host, TCP performance was
increased by a factor of four.

Effects of Host Tuning on
EdgeWarp Data Transmission

Performance

0

20

40

60

Untuned
Bandwidth

Tuned
BandwidthD

at
a

Tr
an

sm
is

si
on

 R
at

e
(M

b/
se

c)

Figure 6. Effects of Host Tuning on EdgeWarp

Testrig Performance

5.0 Conclusions and Future Work

This paper demonstrated that Web100 can be
effectively used in combination with network tuning
and the suite of network performance tools currently
available to identify structural and host tuning problems
that can adversely effect end-to-end TCP performance.
Web100 can be thought of in some respects as a TCP
“oscilloscope” that provides a real time window into the
characteristics of the TCP protocol that directly affect
TCP performance.
 To improve the performance of the application
beyond the results presented, several approaches can be
taken. First, a thorough examination of the
characteristics of the application should be performed to
discover any tuning opportunities. Second, attempts
should be made in concert with Network Administrators
to determine if the MTU of the network path between
the server and client can be increased. Finally, an
investigation of the sources of packet loss for reasons
other than congestion will be undertaken. Potential
sources of packet loss include operating system
implementation errors, improperly configured network
equipment, and all of the other sources mentioned in
section 1.3. If the network bottleneck proves to be

 n SD 95% CI of Mean Median
Mistuned
Bandwidth 601 1.3121 11.728 to 11.938 12.395

Tuned
Bandwidth 601 9.0751 40.613 to 42.067 41.578

 8

uncongested the use of parallel TCP connections to
improve throughput should be investigated.
 The use of Web100 along with the other tools
mentioned will be critical in assessing the impacts of
these tuning efforts.

Acknowledgements
The work described in this paper would not have been
possible without the help of many individuals. Anjana
Kar at PSC and the Web100 development team
provided help in the building and installation of the
Web100 software. Bill Green and Art Wetzel of PSC
developed the edgewarp client, voxel server and test rig.
Finally, Matt Mathis at PSC provided patient tutoring
on TCP network tuning and using Web100.

REFERENCES

[1] R. Hobby, Internet2 End-to-End Performance
Initiative. http://www.internet2.edu/e2eperf/papers/End-
to-End-Perf-Design-Paper.pdf
[2] F. L. Bookstein, W. D. K. Green, “Edgewarp 3D: A
Preliminary Manual”, Posted to the Internet as
ftp://brainmap.med.umich.edu/pub/edgewarp3.1/manual
.html, 1998.
[3] University of Michigan Visible Human Project.
http://vhp.med.umich.edu.
[4] V. Paxson, M. Allman, S. Dawson, W. Fenner, J.
Griner, I. Heavens, K. Lahey, J. Semke, B. Volz,
Known TCP Implementation Problems, RFC 2525,
Informational, March 1999. URL ftp://ftp.isi.edu/in-
notes/rfc2525.txt.
[5] B. Tierney, “Information on critical Linux TCP bug
for high-speed WAN applications”. http://www-
didc.lbl.gov/Linux-tcp-bug.html. December 2000.
[6] V. Jacobson, “Congestion Avoidance and Control.”
Proceedings of ACM SIGCOMM ’88.
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
[7] M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The
Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm.” Computer Communication
Review, volume 27, number3, July 1997.
[8] Marix.net Internet Ratings. http://ratings.miq.net/
[9] J.F. Kurose, K.W. Ross: Computer Networking: A
Top-Down Approach Featuring the Internet, Addison-
Wesley, 2001.
[10] H. Sivakumar, S. Bailey, R. L. Grossman,
“PSockets: The Case for Application-level Network
Striping for Data Intensive Applications using High
Speed Wide Area Networks”, Proceedings of
Supercomputing 2000, IEEE.
[11] J. Sorensen, “Alteon AceNIC / 3Com 3C985 /
NetGear GA620 Gigabit Ethernet Adapter “,
http://jes.home.cern.ch/jes/gige/acenic.html
[12] Web100 Project. http://www.web100.org.

[13] B. Mah, "pchar: A tool for measuring internet path
characteristics," http://www.employees.org/
bmah/Software/pchar/.
[14] J. Goujun. “Methods for Network Analysis and
Troubleshooting” http://www-
didc.lbl.gov/~jin/network/net-tools.html
[15] M. Gates, A. Warshavsky, Iperf version 1.1.1,
Bandwidth Testing Tool, NLANR Applications,
February 2000.
[16] V. Jacobson, “Traceroute: A tool for printing the
route packets take to a network host”, available from
ftp.ee.lbl.gov/nrg.html.
[17] V. Jacobson, C. Leres, S. McCanne, tcpdump,
available at ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.
[18] M. Faerman, A. Su, R. Wolski, and F. Berman.
“Adaptive Performance Prediction for Distributed Data-
Intensive Applications.” In Proceedings of
Supercomputing 1999. IEEE Computer Society Press,
1999. Available at
http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.
Html
[19] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C.
Brooks, D. Gunter, "The NetLogger Methodology for
High Performance Distributed Systems Performance
Analysis", Proceeding of IEEE High Performance
Distributed Computing conference, July 1998, LBNL-
42611. http://www-didc.lbl.gov/NetLogger/
[20] C. Lee, J. Stepanek, R. Wolski, C. Kesselman, I.
Foster, "A Network Performance Tool for Grid
Environments", in Proceedings of 7th IEEE
International Symposium on High Performance
Distributed Computing, pp. 260--267, 1998
[21] Pittsburgh Supercomputer Center. “About the PSC
Treno Server.” Available at http://www.psc.edu/
pscnoc/treno info.html., November 1995.
[22] NLANR Engineering Services. “A Preconfigured
TCP test rig”
http://www.ncne.nlanr.net/research/tcp/testrig/
[23] NLANR Engineering Services. “TCP Trace Based
Performance Diagnosis Flowchart”
http://www.ncne.nlanr.net/research/tcp/debugging/
[24] M. J. Ackerman, “The Visible Human Project,” J.
Biocomm., vol. 18, p 14, 1991.
[25] PSC News Release. “Web100 Takes First Step
Towards Improving Network Performance” March,
2001.
http://www.psc.edu/publicinfo/news/2001/web100-03-
19-01.html
[26] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow,
“TCP Selective Acknowledgement Options. RFC 2018,
Proposed Standard, April 1996.” URL
ftp://ftp.isi.edu/in-notes/rfc2018.txt
[27] V. Jacobson, R. Braden, D. Borman, "RFC1323:
TCP Extensions for High Performance", May 1992
[28] M. S. Borella, D. Swider, S. Uludag, G. Brewster,
"Internet Packet Loss: Measurement and Implications

 9

for End-to-End QoS," Proceedings, International
Conference on Parallel Processing, Aug. 1998.
[29] Braden, B., Clark, D., Crowcroft, J., Davie, B.,
Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
Minshall, G., Partridge, C., Peterson, L., Ramakrishnan,
K., Shenker, S., Wroclawski, J., and L. Zhang,
“Recommendations on Queue Management and
Congestion Avoidance in the Internet.”, RFC 2309,
April 1998.
[30] Intel Corporation. Intel L440GX+ Server Board
Product Guide.
http://support.intel.com/support/motherboards/server/l4
40gx/pg.htm
[31] W.R. Stevens. Unix Network Programming
Volume 1: Networking APIs: Sockets and XTI, 2nd
Edition. Englewood Cliffs, New Jersey. Prentice-Hall
1997.
[32] B. D. Athey, A. W. Wetzel, and W. D. K. Green.
“Navigating solid medical images by pencils of
sectioning planes”, Pp. 63--76 in Mathematical
Modeling, Estimation, and Imaging, eds. D. Wilson, H.
Tagare, F. Bookstein, F. Preteaux, and E. Dougherty,
Proc. SPIE, vol. 4121, 2000.

