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Abstract: 
A major source of performance degradation in high-
performance distributed applications has been 
attributed to poor end-to-end TCP performance. The 
root causes of poor TCP performance are difficult to 
isolate and diagnose, and the efficacy of tuning efforts 
are often difficult to gauge. This paper describes some 
sources of poor TCP performance, and describes a 
method to diagnose some of these problems based on a 
combination of existing performance tools and the 
Web100 tuning package. Using this methodology, the 
TCP performance of an application developed for the 
Visible Human project is shown to significantly 
improve. 
 
1     Introduction 
 
Distributed application performance problems traceable 
to poor TCP performance has been identified as a major 
source of performance degradation in high-performance 
applications [1]. Appropriately provisioned network 
infrastructure is essential for providing support for 
high-performance networking. However, lack of proper 
host tuning and unexpected levels of packet loss can 
adversely affect actual end-to-end network performance 
to such an extent that it can nullify the benefits of 
network infrastructure investments. Most operating 
systems are shipped with an overly conservative set of 
network tuning parameters that can severely degrade 
aggregate TCP performance on wide area networks. 
System level effects other than inadequate host tuning 
can also affect end-to-end performance. For example, 
software bugs in the implementation of TCP on host 
systems can contribute to poor TCP performance in 
very subtle ways [4, 5].  
   Applications can greatly benefit from application and 
host tuning efforts targeted at improving aggregate 
network performance.   Measurements of the Edgewarp 
application [2] written for the Visible Human project at 
the University of Michigan [3] has shown that the 
effects of poor host and application tuning can seriously 
degrade bulk transport performance necessary for 
delivering images by at least a factor of four.  

 
1.1 Actual TCP Bandwidth Delivered to the 
Application 

 
If a host and application are properly tuned, effects 
outside the control of the host and application can 
adversely affect network performance. Limitations on 
TCP bandwidth arise from the effects of packet loss and 
packet round trip time on the network path between 
hosts. The TCP Slow Start and Congestion Control 
algorithms [6] probe the network path between the 
sender and receiver to both discover the maximum 
available transfer capacity of the network and at the 
same time minimize the effects of overloading the 
network and causing congestion.  
   Mathis [7] described the relationship between the 
upper bound of TCP bandwidth BW , packet round trip 
time RTT , and packet loss p  with the equation 
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To achieve substantial network performance over a 
wide area network that has a relatively large RTT , the 
required maximum packet loss rate p must be very 
low. The relationship derived by Mathis for the 
maximum packet loss rate required to achieve a target 
bandwidth is defined by the relationship 
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For example, if the minimum link bandwidth between 
two hosts is OC-12 (622 Mbps), and the average round 
trip time is 20 msec, the maximum packet loss rate 
necessary to achieve 66% of the link speed (411 Mbps) 
is approximately 0.00018%, which represents only two 
packets lost out of every 100000 packets. Current loss 
rates on the commercial Internet backbone [8] are on 
the order of 0.1%, which puts a hard upper limit on the 
potential bandwidth available to an application. 
   Recent work [28] has demonstrated that packet loss 
events occur in bursts of consecutive packet losses that 
may be due to the drop-tail queuing mechanism in 
routers [29]. As the implementation and use of the 
Random Early Detection (RED) queuing mechanism 
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becomes widely deployed across the Internet, this 
characteristic may change. Given the burst behavior of 
packet loss, obtaining significantly small packet loss 
rates can be very difficult. Looking at equation (1), it is 
apparent that increasing the MTU from the usual default 
value of 1500 bytes to the “jumbo frame” size of 9000 
bytes can increase the upper limit on TCP bandwidth by 
a factor of six. The recent experience of one of the 
authors demonstrated that increasing the MTU by a 
factor of three from 1500 to 4470 bytes increased TCP 
throughput by a roughly equivalent factor.  
 
1.2     Uncooperative Network Application Behaviors 
 
Application developers have learned to overcome poor 
TCP performance with a toolkit of “bad” (from the 
network administrator’s perspective) behaviors.  
   The first approach usually taken is to abandon the 
TCP transport service and to rely on UDP along with a 
transport layer written for the application. In this 
approach, the application simply transmits packets as 
fast as it can. If any packets are lost, the application 
either drops them (as in the case of multimedia 
applications), or performs packet retransmission on an 
application level. This approach is considered “bad” for 
several reasons. If an application is injecting UDP 
packets into the network at a high rate, the network 
infrastructure has no way of signaling back to the 
application that the flow is congesting the network and 
affecting other users of the network. If the other users 
of the network are being “good” and using TCP for 
their connection, the UDP stream is able to take an 
unfair share of the available network bandwidth [9, p. 
246].   
   The second approach is to open parallel TCP network 
sockets between applications, and utilize software 
controlled striping of the data across the sockets, similar 
to disk striping [10]. This approach attempts to take 
more than the host’s normal share of network 
bandwidth from other users of the network to deliver a 
higher aggregate network bandwidth to the end hosts. 
When there is a significant amount of random packet 
loss experienced by the end hosts that is not due to 
congestion, parallel TCP sockets can be a fair and 
effective method to improve aggregate throughput. 
 
1.3 Tuning Methodology and Other Sources of Poor 
Network Performance 
 
Even if the end hosts are properly tuned and the 
network packet loss rate is acceptable, other factors 
may come into play that can adversely affect network 
performance. Each of these factors should be 
considered in turn when diagnosing poor network 
performance, since a fault at a lower layer will affect 
performance in all of the layers above it. 

   In the Physical Layer, network cables that are not 
within specification limits can be a significant source of 
poor performance. A general rule of thumb is that Cat-5 
cables are good for 10-BaseT, Cat-5 enhanced cables 
(Cat-5e) are good for 100-BaseT, and Cat-6 cables are 
good for gigabit Ethernet over copper. Network 
adapters are very good at getting around bad cables by 
decreasing their throughput or using data-link layer 
CRC correction to compensate for a cable that is 
operating below specification. An additional source of 
problems are host network adapters that are configured 
to operate at half-duplex mode rather than full-duplex 
mode.  If both the network switch and the network 
adapters support full-duplex transfers, both sides should 
be set to full duplex. If excessive losses are encountered 
in full-duplex mode, the cabling between the host and 
switch should be tested or replaced. 
   In the Data Link Layer, there are several potential 
sources of problems. First, if the maximum 
transmission unit size (MTU) for packets is set too low, 
TCP connections will suffer from poor performance. On 
10 and 100 Mb/sec Ethernet, all adapter cards enforce a 
1500 byte MTU limit. On some Gigabit Ethernet cards, 
the MTU can be set to a “jumbo size” 9000 byte frame. 
If we look back at equation (1), it’s apparent that 
increasing the MTU size (which is MSS + IP header) by 
a factor of six can increase TCP bandwidth by a factor 
of six! Unfortunately, most network switches and 
routers have a hard 1500 byte MTU limit that cannot be 
changed.  
   On the host side, another source of problems in the 
Data Link Layer is the number of CPU interrupts per 
second that are required to service the network adapter. 
If a transfer is occurring at gigabit Ethernet speeds, with 
a limited 1500 byte MTU, the network adapter and CPU 
must service over 83,000 packets per second. If the 
network adapter requires service from the CPU for a 
small number of packets, the CPU will be overwhelmed 
with servicing network adapter interrupts [11]. The 
device driver must be configured to permit an 
appropriate degree of packet coalescing to take 
advantage of the network adapter’s packet buffer. 
Additionally, the size of the transmission queue in the 
operating system (txqueuelen in Linux) can affect the 
packet loss rate on the host. Finally, the PCI slot where 
the network adapter card is placed can have an impact 
on performance. Some motherboards, such as the Intel 
L440GX+[40], have a dual PCI bus architecture, with 
specialized PCI slots that are enhanced for specific 
functions (such as RAID adapters). If a host contains 
RAID adapters along with network adapters, improper 
adapter card placement can have an impact on the 
aggregate performance of the complete system. 
   In the Network Layer, there are several potential 
sources of problems. First, excessive packet loss and 
round trip time affects TCP bandwidth as described 
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above in equation (1). Second, there may be network 
configuration errors that forces traffic through an 
inadequate data link, or that adds unnecessary 
additional hops in the path between the hosts. This 
problem can be especially difficult to diagnose if IP 
encapsulation (such as AAL5 for IP over ATM) occurs 
on the network path, since IP based network tools (such 
as traceroute) do not have the ability to adequately 
penetrate an ATM cloud to diagnose ATM problems. 
   In the Transport Layer, mistuned host TCP options 
are a very common source of problems. Section 3 of 
this paper will describe some of these options and 
demonstrate how they can affect TCP performance. 
   Finally, the network I/O characteristics of the 
application can dramatically impact TCP performance. 
Application developers should consider multithreading 
their applications to decouple network I/O from 
computation. Chapter 6 of Steven’s text [31] is a good 
starting point for these efforts. 
   The process of examining the network from the 
Physical Layer up to the Application Layer represents 
an orderly methodology that should be followed when 
attempting to diagnose and correct network 
performance problems. It is important to note that if a 
problem exists at a lower layer in the network, such as 
the physical layer, efforts directed at tuning components  
at a higher layer to improve performance may not 
deliver the expected results. For example, if a physical 
link is improperly configured to operate at half duplex, 
attempts to increase performance by optimizing the 
end-to-end network path may yield little if any results. 
Thus, when diagnosing application network 
performance problems, it is important to make sure that 
tuning opportunities at each layer are explored.   
  
1.4 Web100 
 
The remainder of this paper will discuss experiences 
using Web100 for host and application TCP tuning. 
Web100 [12] has been used with great success for 
identifying and diagnosing the symptoms and causes of 
network performance problems and for immediately 
measuring the effects of performance tuning. It is hoped 
that the work described in this paper will be useful to 
application developers and system administrators for 
tuning their host systems and improving network and 
application performance 
 
2     Related Work 
 
The suite of tools that are currently available for 
measurement and diagnosis focus on specific 
characteristics of network performance. The tools most 
frequently used include ping, traceroute, tcpdump, 
pchar, and Iperf. Tools designed for network specialists 
include Treno, and TCP testrig. This section will briefly 

describe each of these tools and how they are currently 
used for diagnosing network performance problems. 
 
2.1 General Tools 
 
The network measurement tools available to application 
developers and system administrators are used to 
measure physical data-link bandwidth, round trip time, 
loss rate, router buffer sizes at each hop in the network, 
and measure end-to-end network bandwidth. 
   The UNIX ping utility is used to transmit and receive 
ICMP Echo packets to a destination host to determine if 
the host is reachable, to measure round trip time (RTT), 
and to measure packet loss on the network path to the 
host. The RTT measurements made by ping can be used 
to estimate the “pipe” capacity (capacity = BW * RTT) 
of the network between two hosts. Since the test load 
put on the network by ping consists of small periodic 
ICMP packets, the packet loss rate measured by ping is 
not very useful for estimating available TCP bandwidth 
using equation (1). The RTT measurement, however, is 
useful for deriving the maximum packet loss rate 
necessary to support a desired TCP bandwidth in 
equation (2). 
   Traceroute [16] is used to discover the IP network 
route between two hosts and the RTT to each hop in the 
network route. Traceroute is used to diagnose routing 
problems between hosts. 
   Tcpdump [17] is a packet capturing and display utility 
that displays all packets on a network segment 
connected to a network adapter that is configured in 
“promiscuous mode”. Tcpdump is used to debug 
network protocols and to passively monitor the network 
traffic on a LAN segment. 
   Pchar[13] is a tool that measures bandwidth, round 
trip time, and router buffer space on every data link on 
the network path between two hosts. Pchar is used to 
diagnose and identify data link bottlenecks in the 
network path between two hosts. Pipechar [14] is 
another tool that can be used in conjunction with Pchar 
to further examine network bottleneck characteristics. 
   Iperf [15] is a tool that measures TCP and UDP 
transfer rates between host pairs. Iperf is used to 
estimate the maximum network bandwidth available to 
an application and to investigate the relationship 
between UDP packet injection rate and packet loss on a 
network between two hosts. 
   There are many projects working on designing and 
developing user-level network bandwidth prediction 
and management tools. These projects include Network 
Weather Service [18], NetLogger [19], and  Gloperf 
[20]. A complete list of network measurement tools can 
be found at the NLANR website 
(http://ncne.nlanr.net/software/tools/). 
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2.2 Network Specialist’s Tools 
 
A small set of end-to-end performance measurement 
tools, such as Treno [21] and TCP Testrig [22] are 
available, but the use of these tools requires an 
extensive knowledge of networking and the 
characteristics of TCP along with privileged access to 
network devices in the host operating system.  
   Treno is a tool that performs a single stream transfer 
over a simulated TCP connection to diagnose TCP 
performance problems. TCP Testrig is a TCP test 
harness that is used in combination with tcptrace, xplot, 
tcpdump, and a TCP debugging flowchart [23] to aid 
specialists in characterizing and diagnosing TCP tuning 
problems. 
   Both Treno and TCP Testrig require users to have an 
in-depth knowledge of the TCP protocol and network 
characteristics to realize maximum results. 
 
3     Web100 
 
An application developer or systems administrator can 
make use of a combination of these tools to diagnose 
and correct host and application network problems, but 
there are inherent problems with the measurement 
methodologies within each tool that must be taken into 
account.  
   First, to make a fair estimate of the characteristics of 
the system under measurement, many measurements 
and data points must be collected, and systematic 
sources of error (such as time of day) need to be taken 
into account to eliminate artificial effects. Second, some 
of the tools (pchar, for example) require such a long 
time to run that the results of the measurement may not 
accurately reflect the current state of the system under 
measurement. Third, some components of the network 
path (such as switched ATM clouds) are resistant to IP 
based measurement techniques. Finally, a high degree 
of expertise in networking and operating systems is 
required to realize the full benefits from the use of these 
tools. 
   To address these problems, Web100 [12] was 
developed by a team at Pittsburgh Supercomputing 
Center to provide a window into the characteristics of a 
TCP connection for application developers and systems 
administrators, and to provide an integrated 
performance measurement and diagnosis tool. Web100 
provides kernel level access to internal TCP protocol 
variables, settings, and performance characteristics for 
instantaneous feedback on TCP performance 
characteristics.  
   The current implementation of Web100 consists of 
two major components. The first component is the set 
of Linux kernel modifications that export TCP 
measurements, variables, and settings through the Linux 
‘/proc’ interface. The second major component of 

Web100 is the graphical user tool, Diagnostic Tool 
Builder (dtb), which provides an interface to the 
Web100 TCP instrumentation in the form of numerical 
displays, bar graphs, and pie charts of the data values 
provided by Web100.  
 
3.1 Web100 and the Visible Human Project 
 
The Visible Human project at the University of 
Michigan [3, 24] is a data and visualization intensive 
Grid computing project that is designed to deliver 
volumetric three-dimensional rendered human anatomy 
images along with pedagogical content to students at 
teaching hospitals and medical centers across the 
nation. The goal of the Visible Human project is to 
support the simultaneous access of content through the 
Internet by 40 teaching stations for each class session. 
There may be many of these training sessions occurring 
simultaneously throughout the nation. To deliver these 
services interactively, the Visible Human project will 
require guaranteed end-to-end network performance 
(Quality of Service reservation and provision) along 
with high performance data delivery and volume 
rendering systems.  
   The edgewarp [2, 32] application was developed in 
conjunction with the Visible Human project to retrieve 
image voxels from a server and to render the resulting 
anatomical images. To improve the performance of 
edgewarp along with other applications developed to 
support the Visible Human Project (VHP), Web100 was 
used along with a toolset consisting of ping, traceroute, 
pchar, and Iperf to improve the network performance of 
VHP data servers and applications [25]. The features of 
Web100 that proved to be most useful for tuning were 
the real-time measurements of data bytes transmitted, 
packet retransmission, receiver TCP window size, and 
the display of TCP options negotiated by the sender and 
receiver on connection establishment. 
 
4    Using Web100 to Tune End-to-end Performance 
 
To test the ability of the voxel server to deliver voxels 
to a client application, a test rig that connects to the 
Pittsburgh Supercomputing Center Visible Human 
voxel server was developed by the VHP development 
group to simulate the retrieval characteristics of the 
edgewarp browser. The results of the test rig were 
analyzed in combination with the use of Iperf, pchar 
and pipechar to determine if there were any network 
performance bottlenecks in the network path between 
the voxel server at Pittsburgh Supercomputing Center 
and the edgewarp client at the University of Michigan 
in Ann Arbor. 
   Pchar indicated that the structural bottleneck in the 
network path between PSC and U-M was a 100 Mb/sec 
connection to the edgewarp client at U-M. Traceroute, 
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pchar and pipechar indicated that the network path 
(other than the 100 Mb/sec client connection) consisted 
of a combination of OC-12 and Gigabit Ethernet data 
links, with approximately 7 network hops between the 
client and server.  The voxel server ran on a Compaq 
ES-40 server with a Netgear GA620 Gigabit Ethernet 
network adapter. The edgewarp client was configured 
as an Intel 500 Mhz processor Linux host with an Elsa 
NVIDIA graphics card used to render edgewarp 
graphics on the user’s desktop. 
   Once the structural properties of the network path 
were determined, the ability of the EdgeWarp server to 
deliver data from PSC to U-M was tested. Web100 was 
used on the server at PSC to monitor in real-time the 
characteristics of the TCP transfer.  
   The next section will show the transfer characteristics 
of a mistuned Linux host. The following section will 
describe the application of the network tuning 
methodology described earlier along with the results of 
the tuning efforts measured using Web100.  
 
4.1 Characteristics of a Mistuned TCP Receiver 
 
Figure 1 shows the initial Web100 window running on 
the PSC VH server. This window provides an interface 
to allow a user to select a TCP connection of interest, 
and to display and modify TCP variables of interest. 
 

 
 

Figure 1. Web100 Main Window 
 

 
The TCP session between the voxel server at PSC and 
the test rig client U-M was selected in the Web100 main 
window. 

 
 

Figure 2. TCP Connection Properties for an 
EdgeWarp Data Transfer to a Mistuned Host 

 
Figure 2 shows the TCP connection properties for the 
session.  Examination of the contents of this window 
indicates that several TCP options are disabled. First, 
Selective Acknowledgement (SACK) [26], which is 
critical for good TCP performance in networks with 
packet loss, is disabled. Second, the maximum segment 
size (MSS) is very small. Normally over an Ethernet 
LAN, the maximum frame size may be up to 1500 
bytes. If the TCP MSS is set smaller than the network 
and host can actually support, the large number of 
packets that must be processed (relative to the 
potentially smaller number if MSS is set properly) 
creates an additional overhead that can degrade 
performance. Finally, timestamps and window scaling 
options are not used. These options are described in 
RFC1323 [27] and are critical for high-speed TCP 
connections.  
 

 
 
Figure 3. TCP Transfer Rate and Packet Loss Rate 
for EdgeWarp Data Transfer to a Mistuned Host 

 



 6

After examining the TCP connection properties, the 
“Data Bytes Transmitted” and “Packets Retransmitted” 
options were selected from the right panel in the 
Web100 window. Figure three shows the data transfer 
rate in units of bytes transmitted per second in the left 
window, and the packet loss rate in units of packets 
retransmitted per second in the right window. 
   The bar graph in the left window of figure 3 indicates 
that the data transfer rate is approximately 1.5 MB/sec, 
and the right window indicates little or no packet loss.  
   The  “All variable display” in the left panel of the 
main Web100 window shown in figure 1 opens to 
display all of the variables maintained by Web100 in 
real-time for the duration of the connection. Two items 
of interest from this window are the CurrentCwnd and 
CurrentRwinRcv variables.  
   TCP uses the minimum of the advertised TCP 
receiver window size and the calculated congestion 
window to determine the maximum number of 
outstanding unacknowledged TCP segments allowed in 
the network. If the TCP receiver window size is larger 
than the pipe capacity of the network link between the 
sender and receiver, TCP will attempt to “probe” the 
maximum capacity of the network link to carry traffic 
by increasing the congestion window (and the 
corresponding number of “in flight” unacknowledged 
segments) until the network indicates that it is 
congested by dropping a packet.  
   In Figures 1 through 3, it is apparent that no packets 
are being dropped. Using Web100, the congestion 
window size (CurrentCwnd) was observed to be very 
large compared with the receiver window size. Given 
this observation, the number of outstanding segments is 
limited by the TCP receiver window size, not the 
maximum capacity of the network. Thus, an 
inappropriately sized TCP window on the receiver 
limits the performance of TCP at this point. 
 
4.2 Tuning the Network and Hosts 
 
Prior to host tuning efforts, the network connection 
between the client host adapter and the network switch 
was checked to ensure that the Data Link Layer was 
operating in full-duplex mode. The maximum 
transmission unit size (frame size) on the local network 
switch was then checked to ensure that it was 
configured to support a maximum transmission unit size 
(MTU) of at least 1500 bytes. Finally, the network 
cable was checked to verify that it was a Category-5 
enhanced cable. 
   After the Physical and Data Link characteristics of the 
local network infrastructure were validated, the host 
tuning problems described in the previous section were 
addressed.  The client host was tuned to support SACK, 
MTU discovery, Timestamps, and Window Scaling. 
The TCP maximum and default send and receive socket 

buffer, which is used by TCP to determine the receiver 
window size, were set to 2 MB. The server was checked 
to ensure that these options were enabled.  
   Note that setting the TCP send and receive socket 
buffer sizes to a large value may possibly have negative 
effects on the overall performance of the host in several 
instances. First, if the host manages a large number of 
TCP connections, (a webserver, for example) each TCP 
connection could potentially request 2 MB of socket 
buffer. This could easily consume the memory on a host 
may have a limited amount of memory. Second, it is 
possible to use the TCP socket buffer to control the 
maximum TCP bandwidth each connection can use in a 
local area network context the by configuring the TCP 
send and receive socket buffer sizes to a small 
maximum value. With large maximum TCP buffer 
sizes, each connection is allowed to fill the local 
network between two hosts, and other hosts on the LAN 
may experience congestion on the local area network. 
In the past, before the deployment of SACK, this could 
possibly lead to congestion collapse of the network, 
since a large percentage of the packets would be 
retransmitted packets. SACK, however, alleviates this 
problem.  
   Finally, note that with higher network throughput and 
a larger number of network packets that must be 
processed, the host network adapter on both the sender 
and receiver could demand a significantly larger 
percentage of the CPU to handle adapter interrupts. 
This could adversely affect application performance if 
the application is computationally intensive. 
   After checking the network, server host and tuning the 
edgewarp client host, the transfer test was retried. The 
output of tcpdump for the first two packets in the 
connection shows immediate results: 
 
# /usr/sbin/tcpdump port 8694 
Kernel filter, protocol ALL, datagram 
packet socket tcpdump: listening on 
all devices 
 
19:07:26.172433 eth1 > 
spbuild.engin.umich.edu.1088 > 
vh.psc.edu.8694: S 
1067517561:1067517561(0) win 32758 
<mss 1460,sackOK,timestamp 29833739 
0,nop,wscale 5> (DF) 
 
19:07:26.192439 eth1 < 
vh.psc.edu.8694 > 
spbuild.engin.umich.edu.1088: S 
1021853801:1021853801(0) ack 
1067517562 win 4060 <mss 
1460,sackOK,timestamp 1073113995 
29833739,nop,wscale 5> (DF) 
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Both sides of the TCP connection have now agreed on 
the use of SACK, timestamps, an MSS value of 1460 
bytes, and window scale. Figure 4 shows the effect of 
these changes on the TCP connection property 
information provided by Web100. 
 

 
 

Figure 4. Effects of Host Tuning on TCP Client 
Settings 

 
Figure 5 shows the effects of host tuning on the data 
transmission rate and on packet loss. The data 
transmission rate has increased from 1.5 MB/sec in the 
mistuned case to 5 MB/sec. Packet loss is now 
occurring, which indicates that the network is 
experiencing either congestion or random packet loss.  
 

 
 

Figure 5. 
TCP Transfer Rate and Packet Loss Rate on Tuned 

Host 
 
Recall that the structural bottleneck in the network path 
between the server and client is a 100 Mb/sec link. The 
reasonable maximum bandwidth one could hope to 
achieve on this link would be approximately 80 Mb/sec.  
   Figure 6 shows a series of 600 measurements of the 
edgewarp test rig prior to and after host tuning. The 

results indicate that by simply changing a few TCP 
tuning parameters on the host, TCP performance was 
increased by a factor of four. 
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Figure 6. Effects of Host Tuning on EdgeWarp 

Testrig Performance 
 
 
5.0 Conclusions and Future Work 
 
This paper demonstrated that Web100 can be 
effectively used in combination with network tuning 
and the suite of network performance tools currently 
available to identify structural and host tuning problems 
that can adversely effect end-to-end TCP performance.  
Web100 can be thought of in some respects as a TCP 
“oscilloscope” that provides a real time window into the 
characteristics of the TCP protocol that directly affect 
TCP performance.  
   To improve the performance of the application 
beyond the results presented, several approaches can be 
taken. First, a thorough examination of the 
characteristics of the application should be performed to 
discover any tuning opportunities. Second, attempts 
should be made in concert with Network Administrators 
to determine if the MTU of the network path between 
the server and client can be increased. Finally, an 
investigation of the sources of packet loss for reasons 
other than congestion will be undertaken. Potential 
sources of packet loss include operating system 
implementation errors, improperly configured network 
equipment, and all of the other sources mentioned in 
section 1.3. If the network bottleneck proves to be 

  n SD 95% CI of Mean Median
Mistuned 
Bandwidth 601 1.3121 11.728 to 11.938 12.395

Tuned 
Bandwidth 601 9.0751 40.613 to 42.067 41.578
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uncongested the use of parallel TCP connections to 
improve throughput should be investigated. 
   The use of Web100 along with the other tools 
mentioned will be critical in assessing the impacts of 
these tuning efforts. 
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