
Web10G
Joint Techs Tutorial (Part 1)

Andrew K. Adams, akadams@PSC.edu
John Estabrook, jestabro@ILLINOIS.edu
Chris Rapier, rapier@PSC.edu

July 15th, 2012

What is Web10G?
● Web10G is a follow on to Web100.
● Instrumentation of the Linux kernel to add TCP

Extended Statistics as defined in RFC 4898.
○ Extensive per-connection metrics.

● Majority of kernel code contained in loadable kernel
modules.

● Client tools for exploration of instruments.
● API for development of new applications and porting of

existing applications.

Why Web10G?
● Web100 already does this so why should I care?

○ Web100 imposes unacceptable overhead due to the
/proc interface.
■ It will never become part of the mainline linux kernel

codebase.
● The Web100 KIS doesn't conform to RFC 4898.
● Web10G uses netlinks for the ABI allowing deployment

on high volume production hosts.
○ Web100 was limited to ~30k connections.
○ Web10G should allow millions of concurrent

connections.
● Web100 is no longer actively maintained.

Why adopt Web10G?
● The Web10G kernel ABI is efficient.
● The Web10G userspace API is simple and lightweight.

○ Currently 4 calls give access to all instruments in the
stack.

● Web10G will be actively maintained.
○ Funded by NSF grant 1032813.
○ We are focused on mainline inclusion and will continue to

work towards that goal.
● It opens up a new realm of exploration.

○ Full TCP metrics available on production servers can be
a basis for research, application development,
diagnostics, etc.

Kernel
Instrument Set
Joint Techs Tutorial (Part 2)

RFC 4898
● The TCP Extended Statistics MIB exposed

(or instrumented) in Web10G are defined in
RFC 4898 (extends TCP MIB):
○ TCP Extended Statistics MIB, M. Mathis, J. Heffner, R.

Raghunarayan, Request for Comments: 4898, May, 2007.
○ Referred to as the Kernel Instrument Set (KIS).
○ In effect, metrics for TCP/IP performance!

● Culmination of Web100 project.
○ Standardized Web100 and other TCP instruments.

● Web10G KIS contains 123 RFC 4898
variables.

Why is the KIS Important?
● The hour-glass shape of the OSI model

hides the network from upper layers.
○ Perhaps really an artifact of the End2End Argument:

■ i.e., errors could be provided for completely and
correctly in the end-hosts ...

● In any event, the OSI model is really good
for scalability ...
○ ... but really bad for debugging!

● Almost all bugs have same symptom; less
than expected performance.

TCP Tuning is Debugging
● All problems limit TCP/IP performance:

○ Sender/receiver buffer sizes
■ Yeah! TCP Autotuning fixed this!

○ Packet loss, corruption or congestion
○ Packet latency (long round trip times)
○ Packet reordering
○ Improper MSS negotiation or MTU discovery
○ Inefficient applications

● So, end-user sees less than expected
performance ...
○ ... which means we must debug problem!

And Debugging Sucks
● It's all trial and error, and ...
● ... any one bug can mask any other bug(s).

● So, we need diagnostic tools.

● Web100 initially addressed this, now it's
Web10G's job!

What can the KIS do?
● TCP/IP has a vantage point that we can

leverage, and it knows how it's performing,
e.g. the KIS records:
○ options and state (Window scale, SACK),
○ throughput (bytes in/out, etc.),
○ the RTT and MSS (needed for macroscopic

congestion model),
○ flow and congestion control variables (rwin, cwnd,

ssthresh, etc.),
○ and it knows when the sender is out of data, to name

a few!

Path Diagnostics
Instantiation
● TCP Macroscopic Congestion Model:

○ The Macroscopic Behavior of the TCP Congestion Avoidance
Algorithm, M. Mathis, J. Semke, J. Mahdavi, T. Ott, Computer
Communication Review, volume 27, number 3, July 1997.

Data Rate = MSS / RTT * 0.7 / sqrt(p)

● Excessive RTT implies routing problem or
congestion.

● Excessive loss implies congestion or hardware
issues.

● Wrong MSS implies problem with MTU discovery.

Application Binary
Interface
● Linux is moving away from /proc.

○ Web100 used the /proc interface to expose the KIS.
● NetLink provides an ideal ABI.
● DLKM(s) expose the KIS via NetLink to

userland!
● The KIS & ABI provide TCP/IP with a

mechanism to export what TCP/IP knows!
● Web10G ultimately improves the networking

experience of the end-user!

Userland API
Joint Techs Tutorial (Part 3)

Userland API; overview
● Init.
● Send (one of various) messages.
● Returned data encapsulated in easily used

data structures.
and, perhaps,
● Monitor kernel events (say, of connection

creation).
● Respond to events by user-defined

callbacks.
● Close.

API; messages
enum nl_estats_msg_types {
 TCPE_CMD_LIST_CONNS,
 TCPE_CMD_READ_CONN,

TCPE_CMD_WRITE_VAR,
 TCPE_CMD_READ_ALL,
 ...
 NLE_MSG_MAX
};

CMD_LIST_CONNS
● List all connections owned by requesting uid,

in the form:
○ CID (connection ID; RFC 4898)
○ Local address
○ Local port
○ Remote address
○ Remote port

CMD_READ_CONN
● Request current values of all, or a subset of,

MIB vars for a specified CID.
● Returned data is an array of values,

encapsulated in tcpe-data struct.

CMD_READ_CONN, mask
● One has the option of sending a mask with

the read_conn request, specifying a subset
of MIB vars.

● This limits the time spent holding the socket
locked.

CMD_WRITE_VAR
● There are a small number of writable MIB

vars which can be set via this message.
● Limited, of course, to owned connections.

CMD_READ_ALL
● Read all (unmasked) vars for all (owned)

connections.
● Walk the connection table, for each of which,

walk the perf, path, stack, app, and tune
tables.

Event notification
● Event notification delivered over GeNetlink

multicast channels.
● Userland API allows to set callback to

subscribe to a given channel (identified by
unique string).

● Currently we only consider connection
creation.

Netlink library
● The current release uses libmnl for genetlink

support.
● Web10G hides the netlink client library with

opaque types, so changes in this choice will
not affect the API.

Porting to Web10G
● There are changes between the earlier, Web100, KIS

names and RFC 4898 names.
● There are also significant differences in the API,

tempered(?) by the path through the transitional API
released last year.

● Both will be addressed in a porting document available
in the Developers section of web10g.org
○ Available late next week.

Hands-On
Joint Techs Tutorial (Part 4)

Web10g host: frege.ncsa.illinois.edu
host: golf.psc.edu
Passwd: 3uph0rbu
listconns
watchconnmask cid -m mask
watchconnmask cid -m f,f,f,f,f
returns the first 4 entries of each of the MIB
tables.
watchconnmask cid -m 0,0,0,,0
returns only the MIB app table, etc.

