
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2022

MPI Intro Exercises Review

Exercise 1
One C Solution

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

int my_PE_num, number_to_send, message_received;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

number_to_send = my_PE_num;

if (my_PE_num==7)
MPI_Send(&number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

else
MPI_Send(&number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);

MPI_Recv(&message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);

printf("PE %d received %d.\n", my_PE_num, message_received);

MPI_Finalize();

}

Exercise 1
A Possible Fortran Solution

program shifter
implicit none

include 'mpif.h'

integer my_pe_num, errcode, numbertosend, message_received
integer status(MPI_STATUS_SIZE)

call MPI_INIT(errcode)

call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

numbertosend = my_pe_num

if (my_pe_num.EQ.7) then
call MPI_Send(numbertosend, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)

else
call MPI_Send(numbertosend, 1, MPI_INTEGER, my_pe_num+1, 10, MPI_COMM_WORLD, errcode)

endif

call MPI_Recv(message_received, 1, MPI_INTEGER, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, status, errcode)

print *,'PE', my_pe_num, ' received ', message_received, '.'

call MPI_FINALIZE(errcode)
end

Exercise 1
Output

c557-603$ mpicc solution1.c
c557-603$ mpirun -n 8 a.out
PE 2 received 1.
PE 0 received 7.
PE 4 received 3.
PE 3 received 2.
PE 5 received 4.
PE 1 received 0.
PE 7 received 6.
PE 6 received 5.

MPI Anti-patterns

if my_pe == 1:

do something

if my_pe == 2:

do something similar

if my_pe == 3:

do something similar

if my_pe == 4:

do something similar

if my_pe == 5:

do something similar

There are some common MPI beginner anti-patterns or code smells that you should beware of.

First is failing to recognize when all of the PEs are doing the same thing, just working with different data. It you
find yourself writing code that looks like this:

You are probably falling into this trap. I won't ask for a show of hands, but I know many of you tried that here.

MPI Reality Check

if my_pe == 1:

do something

if my_pe == 2:

do something similar

if my_pe == 3:

do something similar

if my_pe == 4:

do something similar

if my_pe == 5:

do something similar
if my_pe == 6:

do something

if my_pe == 7:

do something similar

if my_pe == 8:

do something similar

if my_pe == 9:

do something similar

if my_pe == 10:

do something similar
if my_pe == 11:

do something

if my_pe == 12:

do something similar

if my_pe == 13:

do something similar

if my_pe == 14:

do something similar

if my_pe == 15:

do something similar
if my_pe == 16:
.
.
.
.
.
.
.
.

Remember that we are writing scalable code here. Ask yourself if this would work with 10,000 PEs.

Obviously not. Nor would it work with a runtime variable number of PEs, which
should always be your goal (like our "finding Pi" example).

"Not suspicious" PE specific logic

Worker / Manager
(from Pi code)

if(my_pe_num == 0){
printf("How many intervals? ");
scanf("%d", &n);

}

There are a few exceptions to this. The manager/worker paradigm is very common, and recognizable. And you may find
you need some special logic for the "boundaries". We've already seen both of these cases:

Note that these also behave well when answering the question "what would this look like on 10,000 PEs?"

Boundary Code

if (my_PE_num==7)
MPI_Send(&number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

else
MPI_Send(&number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);

Same is true of variables

dt1 = 0

dt2 = 0

dt3 = 0

dt4 = 0

dt5 = 0

dt6 = 0

dt7 = 0

dt8 = 0
.
.
.
.
.
.
.
.

Apply the same thought process to variables. If you find yourself creating multiple definitions of a variable, you
are probably not thinking parallel. Asking yourself if this will scale to 10,000 PEs will also keep you on track.

Exercise 1
Technically not perfect.

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

int my_PE_num, number_to_send, message_received;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

number_to_send = my_PE_num;

if (my_PE_num==7)
MPI_Ssend(&number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

else
MPI_Ssend(&number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);

MPI_Recv(&message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);

printf("PE %d received %d.\n", my_PE_num, message_received);

MPI_Finalize();

}

Deadlock!

Exercise 1
For the pedants…

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

int my_PE_num, number_to_send, message_received;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

number_to_send = my_PE_num;

if (my_PE_num==7){
MPI_Recv(&message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
MPI_Ssend(&number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

}
else{

MPI_Ssend(&number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);
MPI_Recv(&message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);

}

printf("PE %d received %d.\n", my_PE_num, message_received);

MPI_Finalize();

}

Breaks
the
Deadlock!

Exercise 2
Impossible Solution

• There is no possible solution.

• You can not accomplish this task with the commands you were given.

• It is simply impossible to be sure there isn’t a node somewhere “out there” that
hasn’t yet responded.

• It is possible to create many “solutions” that will work almost all of the time.
Particularly on a tightly coupled machine like Stampede.

• What if Bridges was nodes spread around the solar system. Would your answer still
work?

• It is generally not hard to write MPI codes that will always work. I gave you a
really tricky problem to keep you humble, and not even all of our most basic set of
commands to use.

Exercise 2
Almost Solution

#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){

int my_PE_num, numberofnodes, data;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

if (my_PE_num==0)
for (numberofnodes=1;numberofnodes<512;numberofnodes++)
if(MPI_Send(&data, 1, MPI_INT, numberofnodes, 10, MPI_COMM_WORLD) != MPI_SUCCESS)

break;

printf("The number of nodes is %d.", numberofnodes);

MPI_Finalize();

}

Actually MPI has a very comprehensive error handling
capability. You can redefine it to abort (the default
here), return an error condition, or even call your own
handler to do anything you want.

This would work here:

MPI_Comm_set_errhandler(MPI_COMM_WORLD, MPI_ERRORS_RETURN)

