
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2022

The Bigger Picture

Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

Å Fully Connected (FC)
Å Convolutional (CNN)
Å Residual (ResNet) [Feed forward]
Å Recurrent (RNN), [Feedback, but has vanishing gradients so...]
Å Long Short Term Memory (LSTM)
Å Transformer (Attention based)
Å Bidirectional RNN
Å Restricted Boltzmann Machine
Å

Å

Several of these are particularly common...

Wikipedia Commons

Residual Neural Nets

Å Helps preserve reasonable gradients for very deep networks
Å Very effective at imagery
Å Used by AlphaGo Zero (40 residual CNN layers) in place of previous

complex dual network
Å 100s of layers common, Pushing 1000

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful.
How do we reconcile these two phenomenae? One, very successful, method is to use some feedforward.

Haven't all of our Kerasnetworks been built as strict layers in a sequentialmethod? Indeed, but Kerassupports a
functionalAPI that provides the ability to define network that branch in other ways. It is easy and here
(https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat
experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates
the concept beautifully.

Courtesy: Chris Olah

#Example: input 3 - channel 256x256 image
x = Input(shape=(256, 256, 3))
y = Conv2D(3, (3, 3))(x)
z = keras.layers.add ([x, y])

https://www.tensorflow.org/guide/keras/functional

Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most
effective techniques in deep learning.

Courtesy: Chris Olah

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character
recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true -
text.

"Aoccdrnigto a rscheearchat CmabrigdeUinervtisy, it deosn'tmttaer in waht oredrthe ltteersin a wrodare, the olny
iprmoatnt tihng is taht the frist and lsat ltteersbe at the rghit pclae. The rsetcan be a toatl msesand you can sitll raed
it wouthit porbelm. Tihsis bcuseaethe huamnmniddeosnot raederveylteter by istlef, but the wrodas a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".

LSTMs

Wikipedia CommonsWikipedia Commons

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiterand
Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware. I
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

Wikipedia Commons

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTMtakes care of the
details for us (but has a lot of options).

The Kerasfolks even provide us with an MNIST version (https://keras.io/examples/mnist_hierarchical_rnn/), although I
think it is confusing as we are now killing a fly with a bazooka.

I recommend https://keras.io/examples/conv_lstm/, which uses network is used to predict the next frame of an artificially
generated movie which contains moving squares. A much more natural fit.

https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/

Bi-directional LSTMs

Wikipedia CommonsWikipedia Commons

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

Wikipedia Commons

model = tf.keras.Sequential ([
tf.keras.layers.Embedding (encoder.vocab_size , 64),
tf.keras.layers.Bidirectional (tf.keras.layers.LSTM (64, return_sequences =True)),
tf.keras.layers.Bidirectional (tf.keras.layers.LSTM (32)),
tf.keras.layers.Dense (64, activation=' relu '),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Dense (1)

])

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious:

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the KerasIMDB
movie review sentiment analysisexample (https://www.tensorflow.org/tutorials/text/text_classification_rnn).

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you
interested in natural language processing, and related to our running theme of dimensionality reduction. To
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is
represented by a 64 dimensional vector.

Architectures

AlexNet

With these layers, we can build countless different networks (and use TensorFlow to define them). Again, this is "3rd

day" material, but we present them here and you should feel competent to research them yourself.

Wikipedia Commons

GoogLeNet/ Inception

Generative Adversarial Network
(GAN)

YOLO (You Only Look Once)

Mask R-CNN

Images from original papers

Some Taxonomies

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

ÅClassification (What we did)
ÅLocalization (Where is the digit?)
ÅDetection (Are there digits? How many?)
ÅSegmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some
other building blocks.

As you learn more about machine learning, you will see various ways to categorize the algorithms or tasks or general
approaches to doing something useful. Don't believe any of them are either comprehensive or canonical. They are just
useful ways to keep track of the explosion of options in this space.

Tasks

Classification What we've been doing.

Regression Return a value. Stock price.

Transcription Convert between representations. OCR, speech recognition.

Synthesis Create new input examples. Speech synthesizer. Lots of science these days!

Translation Like the word says. Google Translate.

Segmentation Return a relabeled input vector. Tumor detection.

Denoising Return uncorrupted example. Video game ray tracing.

Again, neither comprehensive nor definitive. The definitions vary from one author to the next, and the list grows all
the time.

Learning Approaches
Supervised Learning

How you learned colors.
What we have been doing just now.
Used for: image recognition, tumor identification, segmentation.
Requires labeled data. Lots of it. Augmenting helps.
Essence: Learning to map one vector to another, given enough examples of the mapping.

Unsupervised Learning
(Maybe) how you learned to see.
What we did earlier with clustering and our recommender, and Deepfake.
Find patterns in data, compress data into model, find reducible representation of data.
Used for: Learning from unlabeled data.
Might be a great way to bootstrap Supervised Learning (train an autoencoder and build from those
weights).

Reinforcement Learning
How you learned to walk.
Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
Used for: Go (AlphaGo Zero), robot motion, video games.
Don't just read data, but interactwith it!

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

Fuzzy Line

Discriminative vs. Generative
Discriminative models classify things, and need only know which side of the hyper-plane the instance lies on.
Generative models need to understand the distribution to generate new instances.

Discriminative Generative

Discriminative models need only capture the conditional probability of digit Y, given image X: P(Y|X). Generative
models must understand the joint probability P(X,Y).

Autoencoder

Input Layer Hidden Layers Output Layer

Autoencoder

Input Layer Output Layer

Latent Features

Autoencoder

Input Layer Output Layer

Latent Features

This autoencoder concept is very
foundational.

It can be used for powerful generational
networks by controlling the latent space
as in variational autoencoders.

Or it can be aconceptual block in more
complex designs like transformers.

DeepfakeTraining

Latent Features

Alice

Bob

DeepfakeAt Work

Latent Features

Alice
Bob

ZaoDoes DiCaprio
The Chinese app Zaodid the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265

https://twitter.com/AllanXia/status/1168049059413643265

AI Based Simulation?

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 ïPublished 12 January 2018

A wise man once (not that long ago) told me "John, I don't
need a neural net to rediscover conservation of energy."

AI Based Simulation Is Here To Stay

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning
Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, Linfeng Zhang

2020 ACM Gordon Bell Prize Winner

ά²Ŝ ǊŜǇƻǊǘ ǘƘŀǘ ŀ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab
initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly
optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-
single/half precision.

