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Purpose of this talk

Now that you know how to do some real parallel programming, 
you may wonder how much you don’t know.  With your newly 
informed perspective we can now take a meaningful look at the 
parallel software landscape so that you can see how much of it 
you are equipped to traverse.



How parallel is a code?

⚫ Parallel performance is defined in terms of scalability

Strong Scalability

Can we get faster for a

given problem size?

Weak Scalability

Can we maintain 

runtime as we scale up 

the problem?



Weak vs. Strong scaling

More

Processors

More

Processors

Weak Scaling

Strong Scaling

More accurate results

Faster results

(Tornado on way!)



Your Scaling Enemy: Amdahl’s Law

How many processors can we 
really use?

Let’s say we have a legacy 
code such that is it only 
feasible to convert half of 
the heavily used routines 
to parallel:



Amdahl’s Law

If we run this on a parallel  
machine with five processors:

Our code now takes about 60s. 
We have sped it up by about 
40%.

Let’s say we use a thousand 
processors:

We have now sped our code by 
about a factor of two.  Is this a 
big enough win?



Amdahl’s Law
⚫ If there is x% of serial component, speedup 

cannot be better than 100/x.

⚫ If you decompose a problem 
into many parts, then the parallel 
time cannot be less than the 
largest of the parts.

⚫ If the critical path through a 
computation is T, you cannot 
complete in less time than T,
no matter how many processors you use .

⚫ Amdahl's law used to be cited by the knowledgeable as a limitation.

⚫ These days it is mostly raised by the uninformed.

⚫ Massive scaling is commonplace:
– Science Literature

– Web (map reduce everywhere)

– Data Centers (Spark, etc.)

– Machine Learning (GPUs and others)



Need to write some scalable code?

First Choice:

Pick a language - or maybe a library, or paradigm 
(whatever that is)?



Languages: Pick One (Hint: MPI  + ?)

Parallel Programming environments since the 90’s

ABCPL

ACE 

ACT++ 

Active messages 

Adl

Adsmith

ADDAP

AFAPI

ALWAN

AM

AMDC

AppLeS

Amoeba 

ARTS

Athapascan-0b

Aurora

Automap

bb_threads

Blaze

BSP

BlockComm

C*. 

"C* in C 

C** 

CarlOS

Cashmere

C4

CC++ 

Chu

Charlotte

Charm

Charm++

Cid

Cilk

CM-Fortran 

Converse

Code

COOL

CORRELATE 

CPS 

CRL

CSP

Cthreads 

CUMULVS

DAGGER

DAPPLE 

Data Parallel C 

DC++ 

DCE++ 

DDD

DICE.

DIPC 

DOLIB

DOME 

DOSMOS.

DRL

DSM-Threads

Ease .

ECO

Eiffel 

Eilean 

Emerald 

EPL 

Excalibur

Express

Falcon

Filaments

FM

FLASH

The FORCE 

Fork

Fortran-M

FX

GA 

GAMMA 

Glenda

GLU

GUARD

HAsL.

Haskell 

HPC++

JAVAR.

HORUS

HPC

IMPACT

ISIS.

JAVAR

JADE 

Java RMI

javaPG

JavaSpace

JIDL

Joyce

Khoros

Karma 

KOAN/Fortran-S

LAM

Lilac 

Linda

JADA 

WWWinda

ISETL-Linda 

ParLin

Eilean

P4-Linda

Glenda 

POSYBL

Objective-Linda

LiPS

Locust

Lparx

Lucid

Maisie

Manifold

Mentat

Legion

Meta Chaos 

Midway

Millipede

CparPar

Mirage

MpC

MOSIX

Modula-P

Modula-2*

Multipol

MPI

MPC++

Munin

Nano-Threads

NESL

NetClasses++ 

Nexus

Nimrod

NOW

Objective Linda

Occam

Omega

OpenMP

Orca

OOF90

P++

P3L

p4-Linda

Pablo

PADE

PADRE 

Panda 

Papers 

AFAPI.

Para++

Paradigm

Parafrase2 

Paralation 

Parallel-C++ 

Parallaxis

ParC 

ParLib++

ParLin

Parmacs

Parti

pC

pC++

PCN

PCP: 

PH

PEACE

PCU

PET

PETSc

PENNY

Phosphorus 

POET.

Polaris 

POOMA

POOL-T

PRESTO

P-RIO 

Prospero

Proteus 

QPC++ 

PVM

PSI

PSDM

Quake

Quark

Quick Threads

Sage++

SCANDAL

SAM

pC++ 

SCHEDULE

SciTL 

POET 

SDDA.

SHMEM 

SIMPLE

Sina 

SISAL.

distributed smalltalk 

SMI.

SONiC

Split-C.

SR

Sthreads 

Strand.

SUIF.

Synergy

Telegrphos

SuperPascal 

TCGMSG.

Threads.h++.

TreadMarks

TRAPPER

uC++ 

UNITY 

UC 

V 

ViC* 

Visifold V-NUS 

VPE

Win32 threads 

WinPar 

WWWinda 

XENOOPS  

XPC

Zounds

ZPL



Paradigm?
⚫ Message Passing

– MPI

⚫ Data Parallel

– Fortran90

⚫ Threads

– OpenMP, OpenACC, CUDA, OpenCL, SYCL

⚫ PGAS

– UPC, Coarray Fortran

⚫ Frameworks

– Charm++

⚫ Hybrid

– MPI + OpenMP



Message Passing:  MPI in particular

Pros

⚫ Has been around a longtime (~20 years inc. PVM)

⚫ Dominant

⚫ Will be around a longtime (on all new platforms/roadmaps)

⚫ Lots of libraries

⚫ Lots of algorithms

⚫ Very scalable (100K+ cores right now)

⚫ Portable

⚫ Works with hybrid models

⚫ We teach MPI in two days also

⚫ This is the only route to massive scalability today!

Cons

⚫ Lower level means more detail for the coder

⚫ Debugging requires more attention to detail

⚫ Domain decomposition and memory management must be explicit

⚫ Students leaving our MPI workshop may face months of work before they are able to actually run their 
production code

⚫ Development usually requires a “start from scratch” approach



Data Parallel – Fortran90

Computation in FORTRAN 90



Data Parallel

Communication in FORTRAN 90



Data Parallel
Pros

⚫ So simple you just learned some of it

⚫ …or already knew it from using Fortran

⚫ Easy to debug

Cons

⚫ If your code doesn’t totally, completely express itself as nice array operations, you are 
left without a flexible alternative.

– Image processing: Great

– Irregular meshes: Not so great



Threads in OpenMP

Fortran:

!$omp parallel do

do i = 1, n 

a(i) = b(i) + c(i) 

enddo

C/C++:

#pragma omp parallel for

for(i=1; i<=n; i++) 

a[i] = b[i] + c[i]; 



subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

!$acc kernels
do i=1,n
y(i) = a*x(i)+y(i)

enddo
!$acc end kernels
end subroutine saxpy

...
$ From main program
$ call SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n, 

float a, 

float *x, 

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Somewhere in main

// call SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

Threads in OpenACC

SAXPY in C SAXPY in Fortran



Threads without directives: CUDA
// Host code

int main(int argc, char** argv)

{

// Allocate input vectors in host memory

h_A = (float*)malloc(size);

if (h_A == 0) Cleanup();

h_B = (float*)malloc(size);

if (h_B == 0) Cleanup();

h_C = (float*)malloc(size);

if (h_C == 0) Cleanup();

// Initialize input vectors

Init(h_A, N);

Init(h_B, N);

// Allocate vectors in device memory

cudaMalloc((void**)&d_A, size);

cudaMalloc((void**)&d_B, size);

cudaMalloc((void**)&d_C, size);

// Copy vectors to device memory

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);    

// Run kernel

int threadsPerBlock = 256;

int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

// Copy results from device memory to host memory

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// GPU Code

__global__ void VecAdd(const float* A, const float* B, float* C, int N)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < N)

C[i] = A[i] + B[i];

}



Threads
Splits up tasks (as opposed to arrays in data parallel) such as 

loops amongst separate processors.

Do communication as a side effect of data loop distribution. Not 
an big issue on shared memory machines.  Impossible on 
distributed memory.

Common Implementations:

pthreads (original Unix standard)

OpenMP

OpenACC

OpenCL (Khronos Group)

DirectCompute (Microsoft)

Very C++ oriented:

– C++ AMP (MS/AMD)

– TBB (Intel C++ template library)

– Cilk (Intel, now in a gcc branch)

– Intel oneAPI (Includes DPC++ and extends SYCL)

– Kokkos

– C++ 11, 17, 20

Pros:

1. Doesn’t perturb data structures, so can be 
incrementally added to existing serial 
codes.

2. Becoming fairly standard for compilers.

Cons:

1. Serial code left behind will be hit by 
Amdahl’s Law

2. Forget about taking this to the next level of 
scalability.  You can not do this on MPPs at 
the machine wide level.



Some Alternatives
OpenCL (Khronos Group)

Everyone supports, but not as a primary focus

Intel – OpenMP

NVIDIA – CUDA, OpenACC

AMD – now HIP

Khronos has now brough out SYCL

Fortran 2008+ threads (sophisticated but not consistently implemented)

C++11 threads are basic (no loops) but better than POSIX

Python threads are fake (due to Global Interpreter Lock)

DirectCompute (Microsoft) is not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Intel oneAPI (Includes DPC++ and extends SYCL)

Kokkos



PGAS with Co-Array Fortran
(now Fortran 2008)

Co-array synchronization is at the heart of the typical Co-Array Fortran program.  
Here is how to exchange an array with your north and south neighbors:

COMMON/XCTILB4/ B(N,4)[*] 

SAVE /XCTILB4/ 

CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) )

B(:,3) = B(:,1)[IMG_S]

B(:,4) = B(:,2)[IMG_N]

CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) ) 

Lots more examples at co-array.org.



Partitioned Global Address Space: (PGAS)

Multiple threads share at least a part of a 
global address space.

Can access local and remote data with 
same mechanisms.

Can distinguish between local and 
remote data with some sort of typing.

Variants:

Co-Array Fortran (CAF)

Fortran 2008

Unified Parallel C (UPC)

Pros:

1. Looks like SMP on a distributed 
memory machine.

2. Currently translates code into 
an underlying message passing 
version for efficiency.

Cons:

1. Depends on (2) to be efficient.

2. Can easily write lots of 
expensive remote memory 
access without paying attention.

3. Currently immature.



Frameworks

Charm++

– Object-oriented parallel extension 
to C++

– Run-time engine allows work to be 
“scheduled” on the computer.

– Highly-dynamic, extreme load-
balancing capabilities.

– Completely asynchronous.

– NAMD, a very popular MD 
simulation engine is written in 
Charm++

One of the more experimental approaches that was gaining some traction 

was to use a parallel framework that handle the load balancing and 

messaging while you “fill in” the science.  Charm++ is the most popular 

example:



Frameworks (Newsflash!)

• After a long time with no positive reports in this space, I can definitely say that the 

Machine Learning (Artificial Intelligence) community has embraced this in an 

effective manner.

• The most popular frameworks/toolkits/packages used for deep learning (aka 

Neural Nets) are very much in this philosophy.

• Caffe, TensorFlow and others use a high level descriptive approach to arrange 

other components, often themselves a higher level layer in Python or whatnot, to 

invoke libraries written in C++ (and actually Fortran is hidden in there more often 

than those groups would believe in the form of BLAS type libraries).

• These frameworks use threads, GPUs and distributed nodes very heavily.

• You could say that the math library nature of this work makes this unique, but the 

innovation in arranging these codeflows is not at all rote.



Hybrid Coding

⚫ Problem: given the engineering constraint of a machine made up of a large collection of multi-
core processors, how do we use message passing at the wide level while still taking advantage 
of the local shared memory?

⚫ Similar Problem: given a large machine with accelerators on each node (GPU or MIC), how do 
we exploit this architecture?

⚫ Solution: Hybrid Coding.  Technically, this could be any mix of paradigms.  Currently, this is 
likely MPI with a directive based approach mixed in.

⚫ At the node level, you may find OpenMP or OpenACC directives most usable.

⚫ But, one must design the MPI layer first, and them apply the OpenMP/ACC code at the node 
level.  The reverse is rarely a viable option.



Counterintuitive:
MPI vs. OpenMP on a node

It might seem obvious that, since OpenMP is created to deal with SMP code, you 
would ideally like to use that at the node level, even if you use MPI for big scalability 
across an MPP.

Very often, it turns out that the MPI-to-the-core (pun completely intended) version is 
faster.  This indeed seems odd.

The answer is that after going to the trouble of doing a proper MPI data 
decomposition, you have also greatly aided the caching mechanism (by moving 
concurrently accessed data into different regions of memory).  Hence the win.

However, if you are only interested in node-level scaling, this would be a lot of 
effort.



Parallel Programming in a Nutshell
Assuming you just took our workshop

⚫ You have to spread something out.

⚫ These can theoretically be many types of abstractions: work, threads, tasks, 
processes, data,…

⚫ But what they will be is your data.  And then you will use MPI, and possibly 
OpenMP/ACC, to operate on that data.



Domain Decomposition Done Well: 
Load Balanced

⚫ A parallel algorithm can only be as fast as the slowest chunk.

– Might be dynamic (hurricane moving up coast)

⚫ Communication will take time

– Usually orders of magnitude difference between registers, 
cache, memory, network/remote memory, disk

– Data locality and “neighborly-ness” matters very much.

Is Texas vs. New Jersey a good idea?



A Few Scalability Hints

⚫ Minimize  Eliminate serial sections of code

– Only Way To Beat Amdahl’s law

⚫ Minimize communication overhead

– Choose algorithms that emphasize nearest neighbor communication

– Possibly Overlap computation and communication with asynchronous 
communication models

⚫ Dynamic load balancing (at least be aware of issue)

⚫ Minimize I/O and learn how to use parallel I/O

– Very expensive time wise, so use sparingly (and always binary)

⚫ Choose the right language for the job!

⚫ Plan out your code beforehand.

– Because the above won’t just happen late in development

– Transforming a serial code to parallel is rarely the best strategy



Summary

⚫ Hardware drives our software options:

– Serial boxes can’t get to petaFLOPs (let alone exaFLOPS)

– Moore’s Law OK, but resulting power dissipation issue is the major 
limiting factor

– Multiple processors are the one current end-run around this issue

– This won’t change any time in the foreseeable future

– So parallel programming we will go…

⚫ Software options are many:

– Reality has chosen a few winners

– You have learned the important ones



In Conclusion…

OpenMP

OpenACC

MPI



MPI 3.0 +X (MPI 3.0 specifically addresses exascale computing issues)

PGAS (partitioned global address space)

CAF (now in Fortran 2008!),UPC

APGAS

X10, Chapel

Frameworks

Charm++

Functional

Haskell

The Future and where you fit.
While the need is great, there is only a short list of serious contenders for 2020 exascale computing usability.



Exascale Computing Project

Appendix I



ECP application domains.



SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Dec 2018

Tested on key machines at ALCF,  

NERSC, OLCF, also Linux, Mac OS X

xSDK Version 0.4.0: December 2018 (even better today)

Multiphysics ApplicationC

Application B

Impact: Improved code quality,  
usability, access, sustainability

Foundation for work on  
performance portability, deeper  

levels of package interoperability

Each xSDK member package uses or  

can be used with one or more xSDK  

packages, and the connecting interface  

is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More  

libraries

PFLOTRAN

More domain  

components

MFEM

SUNDIALS

HDF5

BLAS

More  
external  
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
• 17 math libraries
• 2 domain

components

• 16 mandatory  
xSDK community  
policies

• Spack xSDK
installer

MAGMA

5

9



The planned ECP ST SDKs will span all technology areas

6

0



Endless Exascale apps…

Appendix II



CEED is targeting several ECP applications

Additive Manufacturing
(ExaAM)

Climate (E3SM)

Magnetic
Fusion

(WDMApp)
Modular Nuclear  

Reactors  
(ExaSMR)

Wind Energy (ExaWind)

Subsurface (GEOS)

Urban systems (Urban)
Compressible flow (MARBL)

Combustion (Nek5000)

PI: Tzanio Kolev (LLNL)

2

7
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ECP’s Adaptive Mesh Refinement Co-Design Center:AMReX

• Develop and deploy software to support block-structured

adaptive mesh refinement on exascale architectures

– Core AMR functionality

– Particles coupled to AMR meshes

– Embedded boundary (EB) representation of complex geometry

– Linear solvers

– Supports two modalities of use

• Library support forAMR

• Framework for constructing AMRapplications

• Provide direct support to ECP applications that  

need AMR for their application

• Evaluate software technologies and integrate

with AMReXwhen appropriate

• Interact with hardware technologies / vendors

PI: John Bell (LBNL)

Application Particles ODEs Linear

Solvers

EB

Combustion X X X X

Multiphase X X X

Cosmology X X X

Astrophysics X X X

Accelerators X



29

ECP’s Co-Design Center for Online Data Analysis and Reduction
CODAR

PI: Ian Foster (ANL)

Goal: Replace the activities in HPC workflow that have been mediated through file I/O with in-situ methods /  
workflows. data reduction, analysis, code coupling, aggregation (e.g. parameter studies).

Cross-cutting tools:

• Workflow setup, manager (Cheetah, Savanna); Data coupler (ADIOS-SST); Compression methods  
(MGARD, FTK, SZ), compression checker (Z-checker)

• Performance tools (TAU, Chimbuco, SOSFlow)



30

ECP’s Co-Design Center for Particle Applications: CoPA

Goal: Develop algorithms and software for  
particle methods,

Cross-cutting capabilities:

• Specialized solvers for quantum  
molecular dynamics (Progress / BML).

• Performance-portable libraries for  
classical particle methods in MD, PDE  
(Cabana).

• FFT-based Poisson solvers for  
long-range forces.

Technical approach:

• High-level C++ APIs, plus a Fortran interface (Cabana).

• Leverage existing / planned FFT software.

• Extensive use of miniapps / proxy apps as part of the development process.

PI: Sue Mniszewski (LANL) recently replacing Tim Germann (LANL), who is taking on a larger role in ECP



ECP’s Co-Design Center for Machine Learning: ExaLearn

PI: Frank Alexander(BNL)

3

1

Bringing together experts from 8 DOE Laboratories

• AI has the potential to accelerate scientific discovery or enable prediction in areas currently too  
complex for direct simulation (ML for HPC and HPC for ML)

• AI use cases of interest to ECP:

– Classification and regression, including but not limited to image classification and analysis, e.g. scientific data output  
from DOE experimental facilities or from national security programs.

– Surrogate models in high-fidelity and multiscale simulations, including uncertainty quantification and error estimation.

– Structure-to-function relationships, including genome-to-phenome, the prediction of materials performance based on  
atomistic structures, or the prediction of performance margins based on manufacturing data.

– Control systems, e.g., for wind plants, nuclear power plants, experimental steering and autonomous vehicles.

– Inverse problems and optimization. This area would include, for example, inverse imaging and materials design.

• Areas in need of research

– Data quality and statistics

– Learning algorithms

– Physics-Informed AI

– Verification and Validation

– Performance and scalability

– Workflow and deployment

Expected Work Product: A Toolset That . . .
• Has a line-of-sight to exascale computing, e.g. through using exascale platforms directly, or  

providing essential components to an exascaleworkflow

• Does not replicate capabilities easily obtainable from existing, widely-available packages

• Builds in domain knowledge where possible “Physics”-based ML and AI

• Quantifies uncertainty in predictive capacity

• Is interpretable

• Is reproducible

• Tracks provenance



Machine Learning in the Light Source Workflow

Compressor

Nodes

Local SystemsBeam Line Control and  

Data Acquisition (DAQ)

Network Remote Exascale HPC

Exascale

Supercomputer

10 GB/s - 1Tb/s

Online  

Monitoring and  

Fast Feedback

ML for fast analysis  

at the experimental  

facility. Uses models  

learned remotely.

ML to control

the beam line

parameters Simulate  

experiments, beam  

line control and  

diffraction images at  

scale to create data  

for training

ML networks for image  

classification, feature  

detection and solving inverse  

problems (how to change  

experiment params to get  

desired experiment result)

DAQ

Model

Model

Data

TB/s

Data Data Data Data

Model

Model

Model
Model

ML to design

light source

beam lines
ML at DAQ to

control data as

it is acquired

ML for data  

compression  

(e.g. hit finding).

Use models

learned remotely.

PI: Frank Alexander(BNL)

3

2
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Turbine Wind Plant Efficiency
(Mike Sprague, NREL)

• Harden wind plant design and layout  
against energy loss susceptibility

• Increase penetration of wind energy

Challenges: linear solver perf in strong  
scale limit; manipulation of large  
meshes; overset of structured &  
unstructured grids; communication-
avoiding linear solvers

Additive Manufacturing (AM) of  
Qualifiable Metal Parts
(John Turner, ORNL)

• Accelerate the widespread adoption
of AM by enabling routine fabrication
of qualifiable metal parts

Challenges: capturing unresolved  
physics; multi-grid linear solver  
performance; coupled physics

ExaWind ExaAM EQSIM

Earthquake Hazard Risk Assessment
(David McCallen, LBNL)

• Replace conservative and costly  
earthquake retrofits with safe  
purpose-fit retrofits and designs

Challenges: full waveform inversion  
algorithms

Exascale apps can deliver transformative products and solutions



EQSIM: Understanding and predicting earthquake phenomenon

Vertical motion Horizontal motion
Site  

ground  

motions

Surface waves

Body waves

Ground motions  

tend to be very  

site specificSource

Path

Site

PI: David McCallen (LBNL)

3
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EQSIM: The Exascale “Big Lift” – regional ground motion  
simulations at engineering frequencies

PI: David McCallen (LBNL)

3

5



Scale-up of Clean Fossil Fuel  
Combustion
(Madhava Syamlal, NETL)

• Commercial-scale demonstration of  
transformational energy technologies
– curbing CO2 emissions at fossil
fuel power plants by 2030

Challenges: load balancing; strong
scaling thru transients

Biofuel Catalyst Design
(Mark Gordon, Ames)

• Design more robust and selective  
catalysts orders of magnitude more  
efficient at temperatures hundreds of  
degrees lower

Challenges: weak scaling of overall  
problem; on-node performance of  
molecular fragments

MFIX-Exa GAMESS EXAALT

Materials for Extreme Environments
(Danny Perez, LANL)

• Simultaneously address time, length,  
and accuracy requirements for  
predictive microstructural evolution  
of materials

Challenges: SNAP kernel efficiency on  
accelerators; efficiency of DFTB  
application on accelerators

Exascale apps can deliver transformative products and solutions

38



Design and Commercialization of  
Small Modular Reactors
(Steve Hamilton, ORNL)

• Virtual test reactor for advanced
designs via experimental-quality
simulations of reactor behavior

Challenges: existing GPU-based MC  
algorithms require rework for hardware  
less performant for latency-bound  
algorithms with thread divergence;  
performance portability with OCCA &  
OpenACC not achievable; insufficient  
node memory for adequate CFD + MC  
coupling

Carbon Capture, Fossil Fuel  
Extraction, Waste Disposal  
(Carl Steefel, LBNL)

• Reliably guide safe long-term  
consequential decisions about  
storage, sequestration, and  
exploration

Challenges: performance of Lagrangian  
geomechanics; adequacy of Lagrangian  
crack mechanics) + Eulerian (reaction,  
advection, diffusion) models; parallel  
HDF5 for coupling

ExaSMR Subsurface QMCPACK

Materials for Extreme Environments
(Paul Kent, ORNL)

• Find, predict and control materials  
and properties at the quantum level  
with unprecedented accuracy for the  
design novel materials that rely on  
metal to insulator transitions for high  
performance electronics, sensing,  
storage

Challenges: minimizing on-node  
memory usage; parallel on-node  
performance of Markov-chain Monte  
Carlo

Exascale apps can deliver transformative products and solutions

39



Reliable and Efficient Planning of the  
Power Grid
(Henry Huang, PNNL)

• Optimize power grid planning,
operation, control and improve
reliability and efficiency

Challenges: parallel performance of  
nonlinear optimization based on  
discrete algebraic equations and  
possible mixed-integer programming

ExaSGD Combustion-PELE

High-Efficiency, Low-Emission  
Combustion Engine Design  
(Jackie Chen, SNL)

• Reduce or eliminate current  
cut-and-try approaches for  
combustion system design

Challenges: performance of chemistry  
ODE integration on accelerated  
architectures; linear solver performance  
for low-Mach algorithm; explicit  
LES/DNS algorithm not stable

Exascale apps can deliver transformative products and solutions
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Accurate Regional Impact  
Assessment in Earth Systems  
(Mark Taylor, SNL)

• Forecast water resources and severe  
weather with increased confidence;  
address food supply changes

Challenges: MMF approach for cloud-
resolving model has large biases;  
adequacy of Fortran MPI+OpenMP for  
some architectures; Support for  
OpenMP and OpenACC

Catalytic Conversion of Biomass-
Derived Alcohols
(Thom Dunning, PNNL)

• Develop new optimal catalysts while  
changing the current design  
processes that remain costly, time  
consuming, and dominated by trial-
and-error

Challenges: computation of energy  
gradients for coupled-cluster  
implementation; on- and off-node  
performance

E3SM-MMF NWChemEx ExaBiome

Metagenomics for Analysis of  
Biogeochemical Cycles  
(Kathy Yelick, LBNL)

• Discover knowledge useful for  
environmental remediation and the  
manufacture of novel chemicals and  
medicines

Challenges: Inability of message  
injection rates to keep up with core  
counts; efficient and performant  
implementation of UPC, UPC++,  
GASNet; GPU performance; I/O  
performance

Exascale apps can deliver transformative products and solutions
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E3SM-Multiscale Modeling Framework (MMF)
Cloud Resolving Climate Model for E3SM

• Develop capability to assess regional impacts of climate change on the water cycle that directly affect the US  
economy such as agriculture and energy production.

• Cloud resolving climate model is needed to reduce major  
systematic errors in climate simulations due to structural  
uncertainty in numerical treatments of convection – such as  
convective storm systems

• Challenge: cloud resolving climate model using traditional  
approaches requires zettascale resources

• E3SM “conventional” approach:

– Run the E3SM model with a global cloud resolving atmosphere and
eddy resolving ocean.

• 3 km atmosphere/land (7B grid points) and 15-5 km ocean/ice (1B gridpoints)

– Achieve throughput rate of 5 SYPD to perform climate simulation campaigns including a 500 year control simulation

– Detailed benchmarks on KNL and v100 GPUs show negligible speedups compared to conventional CPUs

• Low arithmetic intensity of most of the code; throughput requirements lead to strong scaling and low work per node.

• E3SM-MMF: Use a multiscale approach ideal for new architectures to achieve cloud resolving convection on Exascale

– Exascale will make “conventional” cloud resolving simulations routine for shorter simulations (process studies, weatherprediction)

– For cloud resolving climate simulations, we need fundamentally new approaches to take advantage of exascaleresources

Convective storm system nearing the Chicago metropolitan area  
http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm

PI: Mark Taylor (SNL)

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm


Cosmological Probe of the Standard  
Model of Particle Physics
(Salman Habib, ANL)

• Unravel key unknowns in the  
dynamics of the Universe: dark  
energy, dark matter, and inflation

Challenges: subgrid model accuracy;  
OpenMP performance on GPUs; file  
system stability and availabilty

Validate Fundamental Laws of Nature
(Andreas Kronfeld, FNAL)

• Correct light quark masses;  
properties of light nuclei from first  
principles; <1% uncertainty in simple  
quantities

Challenges: performance of critical  
slowing down; reducing network traffic  
to reduce system interconnect  
contention; strong scaling performance  
to mitigate reliance on checkpointing

ExaSky LatticeQCD WarpX

Plasma Wakefield Accelerator Design
(Jean-Luc Vay, LBNL)

• Virtual design of 100-stage 1 TeV  
collider; dramatically cut accelerator  
size and design cost

Challenges: scaling of Maxwell FFT-
based solver; maintaining efficiency of  
large timestep algorithm; load balancing

Exascale apps can deliver transformative products and solutions
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High-Fidelity Whole Device  
Modeling of Magnetically  
Confined Fusion Plasmas  
(Amitava Bhattacharjee,  
PPPL)

• Prepare for ITER exps and  
increase ROI of validation  
data and understanding

• Prepare for beyond-ITER
devices

Challenges: robust, accurate,  
and efficient code-coupling  
algorithm; reduction in  
memory and I/O usage

Demystify Origin
of Chemical Elements
(Dan Kasen, LBNL)

• What is the origin of the  
elements?

• How does matter behave  
at extreme densities?

• What are the sources of  
gravity waves?

Challenges: delivering  
performance on accelerators;  
delivering fidelity for general  
relativity implementation

WDMApp ExaStar ExaFEL

Light Source-Enabled  
Analysis of Protein and  
Molecular Structure and  
Design
(Amadeo Perazzo, SLAC)

• Process data
without beam
time loss

• Determine
nanoparticle
size and shape changes

• Engineer functional  
properties in biology and  
materials science

Challenges: improving the  
strong scaling (one event  
processed over many cores)  
of compute-intensive  
algorithms (ray tracing, M-
TIP) on accelerators

Exascale apps can deliver transformative products and solutions

CANDLE

Accelerate and Translate  
Cancer Research
(Rick Stevens,ANL)

• Develop predictive  
preclinical models and  
accelerate diagnostic and  
targeted therapy through  
predicting mechanisms of  
RAS/RAF driven cancers

Challenges: increasing  
accelerator utilization for  
model search; effectively  
exploiting HP16; preparing  
for any data management or  
communication bottlenecks
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