
Introduction to OpenMP

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2021

What is OpenMP?

It is a directive based standard to allow programmers

to develop threaded parallel codes on shared memory

computers.

Directives

Program myscience

... serial code ...

!$omp parallel do

do k = 1,n1

do i = 1,n2

... parallel code ...

enddo

enddo

!$omp end parallel do

...

End Program myscience

CPU

Your original

Fortran or C code

Simple compiler hints

from coder.

Compiler generates

parallel threaded code.

Ignorant compiler just

sees some comments.

OpenMP

Compiler

Hint

Directives: an awesome idea whose time has arrived.

main() {

double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

double pi = 0.0; long i;

#pragma acc kernels

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

GPU

OpenACC

Key Advantages Of This Approach

High-level. No involvement of pthreads or hardware specifics.

Single source. No forking off a separate code. Compile the same program for

multi-core or serial, non-parallel programmers can play along.

Efficient. Very favorable comparison to pthreads.

Performance portable. Easily scales to different configurations.

Incremental. Developers can port and tune parts of their application as

resources and profiling dictates. No wholesale rewrite required. Which can be

quick.

Broad Compiler Support (For 3.x)

Gnu

Intel

IBM

PGI

Cray

MS Visual Studio*

*MS is missing some useful pieces.

A True Standard With A History

POSIX threads

1997 OpenMP 1.0

1998 OpenMP 2.0

2005 OpenMP 2.5 (Combined C/C++/Fortran)

2008 OpenMP 3.0

2011 OpenMP 3.1

2013 OpenMP 4.0 (Accelerators)

2015 OpenMP 4.5

2018 OpenMP 5.0

OpenMP.org: specs and forums and useful links

program hello

!$OMP PARALLEL

print *,"Hello World."

!$OMP END PARALLEL

stop
end

int main(int argc, char** argv){

#pragma omp parallel

{

printf("Hello world.\n");

}

}

Hello World
Hello World in C Hello World in Fortran

Hello World.

Hello World.

Hello World.

Hello World.

Output with OMP_NUM_THREADS=4

General Directive Syntax and Scope

Fortran

!$omp parallel [clause …]
structured block

!$omp end parallel

C

#pragma omp parallel [clause …]
{

structured block

}

This is how these directives integrate into code:

I will indent the directives at the natural code indentation level for readability. It is a

common practice to always start them in the first column (ala #define/#ifdef). Either

is fine with C or Fortran 90 compilers.

clause: optional modifiers
Which we shall discuss

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 4

void *PrintHello(void *threadid)

{

printf("Hello World.\n");

pthread_exit(NULL);

}

int main (int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int rc;

long t;

for(t=0; t<NUM_THREADS; t++){

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){

exit(-1);

}

}

pthread_exit(NULL);

}

Pthreads

Big Difference!

With pthreads, we changed the structure of the original code. Non-

threading programmers can’t understand new code.

We have separate sections for the original flow, and the threaded code.

Serial path now gone forever.

This only gets worse as we do more with the code.

Exact same situation as assembly used to be. How much hand-assembled

code is still being written in HPC now that compilers have gotten so

efficient?

Thread vs. Process

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

Two Processes Two Threads

MPI

General Thread Capability

Master

Thread

Spawned

Threads

Thread

Killed

Typical Desktop Application Threading

Open Browser Tabs (Spawn Thread) Close Browser Tab (Kill Thread)

Typical Game Threading

Game Physics

Rendering

AI

Synchronization

HPC Application Threading

.

.

.

A[0] = 10;

.

.

.

.

.

.

i = i+1;

.

.

.

.

.

for(…){

B[100][100]

}

.

.

.

.

.

.

if (y=4){..

.

.

.

.

.

.

print X

.

.

.

.

.

for(…){

X[1000][10..

}

.

.

.

for or do loop for or do loopworks on big array works on big array

HPC Use of OpenMP

This last fact means that we will emphasize the capabilities of OpenMP

with a different focus than non-HPC programmers.

We will focus on getting our kernels to parallelize well.

We will be most concerned with dependencies, and not deadlocks and race

conditions which confound other OpenMP applications.

This is very different from the generic approach you are likely to see

elsewhere. The “encyclopedic” version can obscure how easy it is to get

started with common loops.

But we will return to the most generic and flexible capabilities before we

are done (OpenMP tasks).

This looks easy! Too easy…

Why don’t we just throw parallel for/do (the OpenMP command for this purpose)

in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there are several general issues that would generate incorrect

results or program hangs if we don’t recognize them:

Data Dependencies

Data Races

Data Dependencies

Most directive-based parallelization consists of splitting up big do/for

loops into independent chunks that the many processors can work on

simultaneously.

Take, for example, a simple for loop like this:

for(index=0; index<10000; index++)

Array[index] = 4 * Array[index];

When run on 10 cores, it will execute something like this…

for(index=0, index<999,index++)

Array[index] = 4*Array[index];

Core

0

for(index=1000, index<1999,index++)

Array[index] = 4*Array[index];

Core

1

for(index=2000, index<2999,index++)

Array[index] = 4*Array[index];

Core

2

for(index=3000, index<3999,index++)

Array[index] = 4*Array[index];

Core

3

for(index=4000, index<4999,index++)

Array[index] = 4*Array[index];

Core

4 ….

No Data Dependency

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1; index<10000; index++)

Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.

Data Dependency

Now core 1, in trying to calculate its first iteration,

for(index=1000; index<1999; index++)

Array[1000] = 4 * Array[1000] – Array[999];

needs the result of core 0’s last iteration. If we want the correct

(“same as serial”) result, we need to wait until core 0 finishes.

Likewise for cores 2, 3, …

Recognizing and Eliminating Data Dependencies

Recognize dependencies by looking for:

A dependence between iterations. Often visible due to use of differing indices.

Is the variable written and also read?

Any non-indexed (scaler) variables that are written to by index dependent variables.

You may get compiler warnings, and you may not.

Can these be overcome?

Sometimes a simple rearrangement of the code will suffice. There is a common bag of

tricks developed for this as this issue goes back 40 years in HPC (for vectorized

computers). Many are quite trivial to apply.

We will now learn about OpenMP capabilities that will make some of these disappear.

Sometimes they are fundamental to the algorithm and there is no answer other than

rewrite completely or leave as serial.

But you must catch these!

Plenty of Loops Don't Have Dependencies

If there aren't dependencies, we can go ahead and parallelize the loop. In the most straightforward

case:

int main (int argc, char *argv[]){

int array[1000000];

#pragma omp parallel for

for (int i = 0; i <= 1000000; i++){

array[i] = i;

}

}

Standard C

program simple

integer array(1000000)

!$omp parallel do

do i = 1,1000000

array(i)=i

enddo

!$omp end parallel do

end program

Fortran

Compile and Run

Fortran:

pgf90 –mp simple.f90

export OMP_NUM_THREADS=8

a.out

We are using PGI compilers here. Others are very similar (-fopenmp, -omp). Likewise, if you are using a

different command shell, you may do “setenv OMP_NUM_THREADS 8”.

C:

pgcc –mp simple.c

export OMP_NUM_THREADS=8

a.out

If you wonder if/how your directives are taking effect (a very valid question), the compilers always offer

to be more verbose. With PGI, you can add the "-Minfo=mp" option. Give it a try.

Activate

OpenMP

directives Run with 8

threads

Loops with Shared Variables

Most serious loops have other variables besides an array or two. The sharing of these

variables introduces some potential issues. Here is a toy problem with a scalar that is

written to.

float height[1000], width[1000], cost_of_paint[1000];

float area, price_per_gallon = 20.00, coverage = 20.5;

.

.

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

real*8 height(1000),width(1000),cost_of_paint(1000)

real*8 area, price_per_gallon, coverage

.

.

do index=1,1000

area = height(index) * width(index)

cost_of_paint(index) = area * price_per_gallon / coverage

end do

C Version Fortran Version

Applying Some OpenMP

A quick dab of OpenMP would start like this:

#pragma omp parallel for

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do

do index=1,1000

area = height(index) * width(index)

cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end parallel do

C Version Fortran Version

We are requesting that this for/do loop be executed in parallel on the available

processors.

Something is wrong.

If we ran this code we would find that sometimes our results differ from the serial code (and are simply

wrong). The reason is that we have a shared variable that is getting overwritten by all of the threads.

#pragma omp parallel for

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do

do index=1,1000

area = height(index) * width(index)

cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end do

Between its assignment and use by any one thread, there are other threads (7 here) potentially

accessing and changing it. This is prone to error. Possibly the worst kind: the intermittent one.

Shared Variables

.

.

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price…

}

.

.

height

area

width

cost_of_paint

With Two Threads

.

.

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price…

}

.

.

By default variables are shared in OpenMP. Exceptions include index variables and

variables declared inside parallel regions (C/C++). More later.

What We Want

.

.

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price…

}

.

.

height

area

width

cost_of_paint

With Two Threads

.

.

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price…

}

.

.

We can accomplish this with the private clause.

area area

Private Clause At Work

Apply the private clause and we have a working loop:

#pragma omp parallel for private(area)

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do private(area)

do index=1,1000

area = height(index) * width(index)

cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end parallel do

C Version Fortran Version

There are several ways we might wish these controlled variables to behave. Let’s

look at the related data-sharing clauses. private is the most common by far.

Other Data Sharing Clauses

shared(list) This is the default (with the exception of index and locally declared

variables. You might use this clause for clarification purposes.

firstprivate(list) This will initialize the privates with the value from the master thread.

Otherwise, this does not happen!

lastprivate(list) This will copy out the last thread value into the master thread copy.

Otherwise, this does not happen! Available in for/do loop or section only,

not available where “last iteration” isn’t clearly defined.

default(list) You can change the default type to some of the others.

threadprivate(list)Define at global level and these privates will be available in every parallel

region. Use with copyin() to initialize values from master thread. Can

think of these as on heap, while privates are on stack.

What is automatically private?

The default rules for sharing (which you should never be shy about redundantly designating with clauses)

have a few subtleties.

Default is shared, except for things that can not possibly be:

outer loop index variable

inner loop index variables in Fortran, but not in C.

local variables in any called subroutine, unless using static (C) or save (Fortran)

variables declared within the block (for C).

This last makes the C99 loop syntax quite convenient for nested loops:

#pragma omp parallel for

for (int i = 0; i <= n; i++){

for (int j = 0; j<= m; j++){

Array[i][j] = Array[i][j]+1

}

}

Loop Order and Depth

The parallel for/do loop is common enough that we want to make sure we really

understand what is going on.

#pragma omp parallel for private (i,j)

for (i = 0; i <= n; i++){

for (j = 0; j<= m; j++){

Array[i][j] = Array[i][j]+1

}

}

!$omp parallel do private (i,j)

do i = 2,n

do j = 2,i-1

Array(j,i) = Array(j,i)+1

end do

end do

!$omp end parallel do

Optionalj is required

Loop

that is

parallelized
Index order reversed

(for good reason)

In general (well beyond OpenMP reasons), you want your innermost loop to index over

adjacent items in memory. This is opposite for Fortran and C. In C this last index

changes fastest. We can collapse nested loops with a collapse(n) clause.

Prime Counter
Let’s try a slightly more complicated loop. This counts prime numbers.

include <stdlib.h>

include <stdio.h>

int main (int argc, char *argv[]){

int n = 500000;

int not_primes=0;

int i,j;

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

printf("Primes: %d\n", n - not_primes);

}

program primes

integer n, not_primes, i, j

n = 500000

not_primes=0

do i = 2,n

do j = 2,i-1

if (mod(i,j) == 0) then

not_primes = not_primes + 1

exit

end if

end do

end do

print *, 'Primes: ', n - not_primes

end program

C Version Fortran Version

Parallel Prime Counter

The most obvious thing is to parallelize the main loop.

#pragma omp parallel for private (j)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do

do i = 2,n

do j = 2,i-1

if (mod(i,j) == 0) then

not_primes = not_primes + 1

exit

end if

end do

end do

!$omp end parallel do

C Version Fortran Version

If we run this code on multiple threads, we will find that we get inconsistent results. What is going on?

Data Races

The problem here is a shared variable (not_primes) that is being written to by many threads.

The statement not_primes = not_primes + 1 may look “atomic”, but in reality it requires the

processor to first read, then update, then write the variable into memory. While this is happening,

another thread may be writing its own (now obsolete) update. In this case, some of the additions to

not_primes may be overwritten and ignored.

This sounds similar to our paint calculator example earlier. So will private fix this? Almost. Private

variables aren’t subject to data races, and we will end up with multiple valid not_prime subtotals. So far

so good.

The question then becomes, how do we sum these up into the real total we are looking for?

It is common to have a private variable that has to live on after the loop. This requires us to reduce

these private copies back to a single scaler.

Reductions

Reductions are private variables that must be reduced to a single value eventually.

#pragma omp parallel for private (j) \

reduction(+: not_primes)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes)

do i = 2,n

do j = 2,i-1

if (mod(i,j) == 0) then

not_primes = not_primes + 1

exit

end if

end do

end do

!$omp end parallel do

C Version Fortran Version

At the end of the parallel region (the do/for loop), the private reduction variables will get combined

using the operation we specified. Here, it is sum (+).

Line

Continuation

Reductions

In addition to sum, we have a number of other options. You will find sum, min and

max to be the most common. Note that the private variable copies are all initialized

to the values specified.

Operation Initialization

+ 0

max least number possible

min largest number possible

- 0

Bit (&, |, ^, iand, ior) ~0, 0

Logical (&&, ||, .and., .or.) 1,0, .true., .false.

The 4.0 standard even allows you to define your own. You probably won't.

We shall return.

#pragma omp parallel for private (j) \

reduction(+:not_primes)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes)

do i = 2,n

do j = 2,i-1

if (mod(i,j) == 0) then

not_primes = not_primes + 1

exit

end if

end do

end do

!$omp end parallel do

C Version
Fortran Version

A few notes before we leave (for now):

• The OpenMP standard forbids branching out of parallel do/for loops, although you can now cancel. Since the

outside loop is the threaded one (that is how it works), our break/exit statement for the inside loop are OK.

• You can verify the output at primes.utm.edu/nthprime/index.php#piofx Note that we count 1 as prime.

They do not.

Our Foundation Exercise: Laplace Solver

We will also use this for MPI and OpenACC. It is a great simulation problem, not rigged for OpenMP.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of its

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

do j=1,columns
do i=1,rows

temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

dt = 0.0;

for(i = 1; i <= ROWS; i++){
for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

Serial C Code Subroutines

void track_progress(int iteration) {

int i;

printf("-- Iteration: %d --\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
}
printf("\n");

}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

int i, j; // grid indexes
int max_iterations; // number of iterations
int iteration=1; // current iteration
double dt=100; // largest change in t
struct timeval start_time, stop_time, elapsed_time; // timers

printf("Maximum iterations [100-4000]?\n");
scanf("%d", &max_iterations);

gettimeofday(&start_time,NULL); // Unix timer

initialize(); // initialize Temp_last including boundary conditions

// do until error is minimal or until max steps
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

track_progress(iteration);
}

iteration++;
}

Whole C Code

gettimeofday(&stop_time,NULL);
timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

int i;

printf("---------- Iteration number: %d ------------\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
}
printf("\n");

}

do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

do j=1,columns
do i=1,rows

dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

program serial
implicit none

!Size of plate
integer, parameter :: columns=1000
integer, parameter :: rows=1000
double precision, parameter :: max_temp_error=0.01

integer :: i, j, max_iterations, iteration=1
double precision :: dt=100.0
real :: start_time, stop_time

double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

print*, 'Maximum iterations [100-4000]?'
read*, max_iterations

call cpu_time(start_time) !Fortran timer

call initialize(temperature_last)

!do until error is minimal or until maximum steps
do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

!copy grid to old grid for next iteration and find max change
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

!periodically print test values
if(mod(iteration,100).eq.0) then

call track_progress(temperature, iteration)
endif

iteration = iteration+1

enddo

call cpu_time(stop_time)

print*, 'Max error at iteration ', iteration-1, ' was ',dt
print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

end subroutine track_progress

Exercise 1: Use OpenMP to parallelize the Jacobi loops
(About 45 minutes)

2) Edit laplace_serial.c or laplace_serial.f90 (your choice) and add directives where it helps. Try

adding "-Minfo=mp" to verify what you are doing.

3) Run your code on various numbers of cores (such as 8, per below) and see what kind of speedup

you achieve.

> nvc -mp laplace_omp.c or nvfortran -mp laplace_omp.f90

> export OMP_NUM_THREADS=8

> a.out

1) Log onto a node requesting all the 32 cores.

> interact –n 32

Exercise 1 C Solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma omp parallel for private(i,j)
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

#pragma omp parallel for reduction(max:dt) private(i,j)
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;
}

Thread this loop

Also this one, with a

reduction

Exercise 1 Fortran Solution
do while (dt > max_temp_error .and. iteration <= max_iterations)

!$omp parallel do
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1))
enddo

enddo
!$omp end parallel do

dt=0.0

!$omp parallel do reduction(max:dt)
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$omp end parallel do

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Thread this loop

Also here, plus a

reduction

Scaling?
For the solution in the Laplace directory, we found this kind of scaling when running to

convergence at 3372 iterations. This is on a clean 128 core node.

Codes were compiled with no extra flags, and there was some minor variability.

Threads C (s) Fortran (s) Speedup

Serial 21.4 20.6

2 10.8 10.3 2.0

4 5.4 5.2 4.0

8 2.7 2.6 7.9

16 1.4 1.4 14.7

32 0.80 0.80 25.7

64 0.72 0.72 28.6

128 1.4 1.4 14.7The larger version of this problem that we use for the hybrid programming example (10K x

10K) continues to scale nicely on Bridges EM large memory nodes to 96 cores!

Time for a breather.

Congratulations, you have now learned the OpenMP parallel for/do

loop. That is a pretty solid basis for using OpenMP. To recap, you just

have to keep an eye out for:

Dependencies

Data races

and know how to deal with them using:

Private variables

Reductions

Different Work Sharing Constructs

Master

Thread

parallel

for/do

parallel

for/do
parallel

for/do

Master

Thread

for/do

parallel region

for/do for/do

What we have been doing

What we could do (less overhead, no idle cores, finer control, more flexible algorithms)

The parallel Construct
This sets the stage for most of the more advanced or flexible directives we are going to use. It tells the

system to grab the specified number of threads and set them loose.

#pragma omp parallel [clause, clause, ...]

structured-block

The clauses are

if([parallel :] scalar-expression)

num_threads(integer-expression)

default(data-sharing-attribute)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction([reduction-modifier ,] reduction-identifier : list)

proc_bind(affinity-policy) One of primary, close, spread

allocate([allocator :] list)

Multiple ways of specifying threads.

In order of precedence:

if clause Logical value determines if this region is parallel or serial.

num_threads clause Set this to specify how many threads in this region.

omp_set_num_threads() A library API to set the threads.

OMP_NUM_THREADS The environment variable we have been using.

Default Often the number of cores on the node.

There is also, depending on the compute environment, the possibility of dynamic thread counts.

There are a few library APIs to deal with that.

Fortran 90
Fortran 90 has data parallel constructs that map

very well to threads. You can declare a

workshare region and OpenMP will do the right

thing for:

FORALL

WHERE

Array assignments

PROGRAM WORKSHARE

INTEGER N, I, J
PARAMETER (N=100)
REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
.
.
.

!$OMP PARALLEL SHARED(AA,BB,CC,DD,FIRST,LAST)

!$OMP WORKSHARE
CC = AA * BB
DD = AA + BB
FIRST = CC(1,1) + DD(1,1)
LAST = CC(N,N) + DD(N,N)

!$OMP END WORKSHARE

!$OMP END PARALLEL

END

Another Work Sharing Construct

Master

Thread

Sections

Section 2

Section 3

Section 4 Section 3

Section 1

Section 2

Section 1

Each section will be processed by one thread. The number of sections can be

greater or less than the number of threads available – in which case threads will do

more than one section or skip, respectively.

Sections
.
.
!$OMP PARALLEL SHARED(A,B,X,Y), PRIVATE(INDEX)

!$OMP SECTIONS

!$OMP SECTION
DO INDEX = 1, N

X(INDEX) = A(INDEX) + B(INDEX)
ENDDO

!$OMP SECTION
DO INDEX = 1, N

Y(INDEX) = A(INDEX) * B(INDEX)
ENDDO

!$OMP END SECTIONS

!$OMP END PARALLEL
.
.

.

.

.
#pragma omp parallel shared(a,b,x,y) private(index)
{

#pragma omp sections
{

#pragma omp section
for (index=0; index <n; index++)
x[i] = a[i] + b[i];

#pragma omp section
for (index=0; index <n; index++)
y[i] = a[i] * b[i];

}

}
.
.

Both for/do loops run concurrently. Still same results as serial here.

And for ultimate flexibility: Tasks

Actually, any thread can spin off tasks. And any thread can pick up a task. They will

all wait for completion at the end of the region.

Master

Thread

parallel region

Summing An Array

float array_sum(float *a, int length){

float total=0;

for (int i = 0; i < length; i++) {
total += a[i];

}

return total;
}

Let's take the simple task of summing an array.

float array_sum(float *a, int length){

float total=0;

#pragma omp parallel for reduction(+:total)
for (int i = 0; i < length; i++) {

total += a[i];
}

return total;
}

Serial Code
Easy OpenMP Version

Recursively Summing An Array

float array_sum(float *a, int length){

// terminal case
if (length == 0) {

return 0;
}
else if (length == 1) {

return a[0];
}

// recursive case
int half = length / 2;
return array_sum(a, half) + sum(a + half, length - half);

}

But maybe we are handed a recursive version of this same code. This represents a

large class of algorithms.

Recursively Summing An Array With Tasks

float array_sum(float *a, int length){

if (length == 0) {
return 0;

}
else if (length == 1) {

return a[0];
}

int half = length / 2;
float x, y;

#pragma omp parallel
#pragma omp single nowait
{

#pragma omp task shared(x)
x = array_sum(a, half);
#pragma omp task shared(y)
y = array_sum(a + half, length - half);
#pragma omp taskwait
x += y;

}
return x;

}

OpenMP tasks allow us to

naturally spin off threads of

work.

Optimized Recursively Summing An Array With Tasks

float array_sum(float *a, int length) {

float total;

#pragma omp parallel
#pragma omp single nowait
total = parallel_sum(a, n);

return total;
}

float serial_sum(float *a, int length)
{

if (length == 0) {
return 0;

}
else if (length == 1) {

return a[0];
}

size_t half = n / 2;
return serial_sum(a, half) +

serial_sum(a + half, length - half);
}

float parallel_sum(float *a, int length){

if (length <= CUTOFF) {
return serial_sum(a, length);

}

int half = length / 2;
float x, y;

#pragma omp task shared(x)
x = parallel_sum(a, half);
#pragma omp task shared(y)
y = parallel_sum(a + half, length - half);
#pragma omp taskwait
x += y;

return x;
}

BTW, we have essentially reproduced the

functionality here of the newish taskloop

directive.

Fibonacci Tasks

int fib(int n)
{
int i, j;

if (n<2)
return n;

else {

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j=fib(n-2);

#pragma omp taskwait
return i+j;

}
}

#include <stdio.h>
#include <omp.h>

int main()
{
int n = 10;

#pragma omp parallel shared(n)
{
#pragma omp single
printf ("fib(%d) = %d\n", n, fib(n));

}
}

Here is one that is almost always presented as a recursive algorithm.

Task Capability

Tasks have additional directives and clauses. The most important are:

taskwait (wait for completion of child tasks, should almost always use)

taskgroup (can wait on child & descendants)

taskyield (can suspend for another task, avoid deadlock)

final (no more task creation after this level)

untied (can change thread dynamically)

mergable (can merge data with enclosing region)

depend (list variable dependencies between tasks [in/out/inout]

This provides a way to order workflow.)

This last one gives us some very powerful capabilities to efficiently manage order

dependencies, and has been an active area of OpenMP development in versions 3.0 through

the latest 5.0.

From the very nice OpenMP.org video https://www.youtube.com/watch?v=YZCWPkKLVYM

Use the dependencies to describe what is happening to
the data, not to force some execution order.

The execution order will depend up upon the actual
order of the source code, with the dependencies
limiting when tasks may be executed.

Only one

at a time

Dynamic Dependencies

We can also now (as of OpenMP 5.0) deal with dynamically defined dependencies, so a

list of items may include array sections.

#pragma omp parallel
#pragma omp single
{

for (int i = 0; i < n; ++i)
#pragma omp task depend(out: array[i])
compute_element(array[i]);

#pragma omp task depend(iterator(k=0:n),in: array[k])
use_elements(array);

}

Here n is evaluated at runtime, and is the equivalent of creating n different in

dependency clauses (depend (in: array[0], array[1], array[2],...) .

Tasks Are Very Powerful

If you really embrace this task paradigm, there is now even a taskloop directive that

allows you to decompose for/do loops into tasks in a very controlled manner. We won't

go into it here.

However before we leave these elegant heights and descend into some much grittier low-

level detail, I want to emphasize that this task approach provides a powerful, and robust

(as in, not error prone) framework that would have been a dream for any pthreads

programmer of yesteryear. You are getting all the scheduling that they have to do at no

cost.

Now, let's go back to our original parallel for/do loops and see what happens if we want

to manage them at a low level ourselves...

Parallel Region Loops with C

#pragma omp parallel shared(t, t_old) private(i,j, iter) firstprivate(niter)
for(iter = 1; iter <= niter; iter++) {

#pragma omp for
for(i = 1; i <= NR; i++) {

for(j = 1; j <= NC; j++) {
t[i][j] = 0.25 * (t_old[i+1][j] + t_old[i-1][j] +

t_old[i][j+1] + t_old[i][j-1]);
}

}

dt = 0.0;

#pragma omp for reduction(max:dt)
for(i = 1; i <= NR; i++){

for(j = 1; j <= NC; j++){
dt = fmax(fabs(t[i][j]-t_old[i][j]), dt);
t_old[i][j] = t[i][j];

}
}
if((iter % 100) == 0) {

print_trace(iter);
}

}

This is a simpler loop

than our actual exercise two’s

condition while loop.

Working example in slide notes

below is not that complicated, but

we will skip it for the nonce.

Parallel Region Loops with Fortran

!$omp parallel shared(T, Told) private(i,j,iter) firstprivate(niter)
do iter=1,niter

!$omp do
do j=1,NC

do i=1,NR
T(i,j) = 0.25 * (Told(i+1,j)+Told(i-1,j)+

$ Told(i,j+1)+Told(i,j-1))
enddo

enddo
!$omp end do

dt = 0

!$omp do reduction(max:dt)
do j=1,NC

do i=1,NR
dt = max(abs(t(i,j) - told(i,j)), dt)
Told(i,j) = T(i,j)

enddo
enddo
!$omp end do

if(mod(iter,100).eq.0) then
call print_trace(t, iter)

endif
enddo

!$omp end parallel

Thread control.

If we did this, we would get correct results, but we would also find that our output

is a mess.

How many iterations [100-1000]? 1000

---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 [999,999]: 94.86 [1000,1000]: 98.67 ---------- Iteration number:

100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 ---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 [999,999]: 94.86 [1000,1000]: 98.67

---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67

[999,999]: 94.86 [1000,1000]: 98.67

All of our threads are doing output. We only want the master thread to do this.

This is where we find the rich set of thread control tools available to us in OpenMP.

Solution with Master

.

.
!$omp master

if(mod(iter,100).eq.0) then
call print_trace(t, iter)

endif
!$omp end master
.
.

.

.

.
#pragma omp master
if((iter % 100) == 0) {

print_trace(iter);
}
.
.

The Master directive will only allow the region to be executed by the master thread.

Other threads skip. By skip we mean race ahead - to the next iteration. We really

should have an “omp barrier” after this or threads could already be altering t as we

are writing it out. Life in parallel regions can get tricky!

Barrier
.
.
!$omp master

if(mod(iter,100).eq.0) then
call print_trace(t, iter)

endif
!$omp end master

!$omp barrier
.
.

.

.

.
#pragma omp master
if((iter % 100) == 0) {

print_trace(iter);
}
#pragma omp barrier
.
.

A barrier is executed by all threads only at:

A barrier command

Entry to and exit from a parallel region

Exit only from a worksharing command (like do/for)

Except if we use the nowait clause

There are no barriers for any other constructs including master and critical!

Solution with thread IDs

.

.
tid = OMP_GET_THREAD_NUM()
if(tid .eq. 0) then

if(mod(iter,100).eq.0) then
call print_trace(t, iter)

endif
endif

.

.

.

.

.
tid = omp_get_thread_num();
if (tid == 0) {

if((iter % 100) == 0) {
print_trace(iter);

}
}
.
.

Now we are using OpenMP runtime library routines, and not directives. We would

have to use ifdef if we wanted to preserve the serial version. Also, we should

include a barrier somewhere here as well.

Other Synchronization Directives & Clauses

single Like Master, but any thread will do. Has a copyprivate clause that can

be used to copy its private values to all other threads.

critical Only one thread at a time can go through this section. Can be named or

unnamed (only one thread in all unamed regions).

atomic Eliminates data race on this one specific, simple statement. More

efficient than critical.

ordered Forces serial order on loops.

nowait This clause will eliminate implied barriers on certain directives.

flush Even cache coherent architectures need this to eliminate possibility of

register storage issues. Tricky, but important iff you get tricky. We will

return to this.

Hints

These two directives now have hint clauses.

We will wait discuss those with locks in a

few slides. But they have great potential to

allow your code to automagically avoid

unnecessary waits to enter these regions.

Run-time Library Routines
OMP_SET_NUM_THREADS Sets the number of threads that will be used in the next parallel region

OMP_GET_NUM_THREADS Returns the number of threads that are currently in the team executing the parallel region from which it is called

OMP_GET_MAX_THREADS Returns the maximum value that can be returned by a call to the OMP_GET_NUM_THREADS function

OMP_GET_THREAD_NUM Returns the thread number of the thread, within the team, making this call.

OMP_GET_THREAD_LIMIT Returns the maximum number of OpenMP threads available to a program

OMP_GET_NUM_PROCS Returns the number of processors that are available to the program

OMP_IN_PARALLEL Used to determine if the section of code which is executing is parallel or not

OMP_SET_DYNAMIC Enables or disables dynamic adjustment of the number of threads available for execution of parallel regions

OMP_GET_DYNAMIC Used to determine if dynamic thread adjustment is enabled or not

OMP_SET_NESTED Used to enable or disable nested parallelism

OMP_GET_NESTED Used to determine if nested parallelism is enabled or not

OMP_SET_SCHEDULE Sets the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_GET_SCHEDULE Returns the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_SET_MAX_ACTIVE_LEVELS Sets the maximum number of nested parallel regions

OMP_GET_MAX_ACTIVE_LEVELS Returns the maximum number of nested parallel regions

OMP_GET_LEVEL Returns the current level of nested parallel regions

OMP_GET_ANCESTOR_THREAD_NUM Returns, for a given nested level of the current thread, the thread number of ancestor thread

OMP_GET_TEAM_SIZE Returns, for a given nested level of the current thread, the size of the thread team

OMP_GET_ACTIVE_LEVEL Returns the number of nested, active parallel regions enclosing the task that contains the call

OMP_IN_FINAL Returns true if the routine is executed in the final task region; otherwise it returns false

OMP_INIT_LOCK Initializes a lock associated with the lock variable

OMP_DESTROY_LOCK Disassociates the given lock variable from any locks

OMP_SET_LOCK Acquires ownership of a lock

OMP_UNSET_LOCK Releases a lock

OMP_TEST_LOCK Attempts to set a lock, but does not block if the lock is unavailable

OMP_INIT_NEST_LOCK Initializes a nested lock associated with the lock variable

OMP_DESTROY_NEST_LOCK Disassociates the given nested lock variable from any locks

OMP_SET_NEST_LOCK Acquires ownership of a nested lock

OMP_UNSET_NEST_LOCK Releases a nested lock

OMP_TEST_NEST_LOCK Attempts to set a nested lock, but does not block if the lock is unavailable

....

Don't be intimidated.

These are either the equivalent of

directives, or complementary.

They can easily by mixed and matched

with directives.

Is this starting to seem tricky?

As we have started to get away from the simplicity of the do/for loop

and pursue the freedom of parallel regions and individual thread

control, we have started to encounter subtle pitfalls.

So, you may be relieved to know that we have covered almost all of

the OpenMP directives at this point. However, there are a few more

run-time library routines to mention…

Run-time Library Routines
OMP_SET_NUM_THREADS Sets the number of threads that will be used in the next parallel region

OMP_GET_NUM_THREADS Returns the number of threads that are currently in the team executing the parallel region from which it is called

OMP_GET_MAX_THREADS Returns the maximum value that can be returned by a call to the OMP_GET_NUM_THREADS function

OMP_GET_THREAD_NUM Returns the thread number of the thread, within the team, making this call.

OMP_GET_THREAD_LIMIT Returns the maximum number of OpenMP threads available to a program

OMP_GET_NUM_PROCS Returns the number of processors that are available to the program

OMP_IN_PARALLEL Used to determine if the section of code which is executing is parallel or not

OMP_SET_DYNAMIC Enables or disables dynamic adjustment of the number of threads available for execution of parallel regions

OMP_GET_DYNAMIC Used to determine if dynamic thread adjustment is enabled or not

OMP_SET_NESTED Used to enable or disable nested parallelism

OMP_GET_NESTED Used to determine if nested parallelism is enabled or not

OMP_SET_SCHEDULE Sets the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_GET_SCHEDULE Returns the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_SET_MAX_ACTIVE_LEVELS Sets the maximum number of nested parallel regions

OMP_GET_MAX_ACTIVE_LEVELS Returns the maximum number of nested parallel regions

OMP_GET_LEVEL Returns the current level of nested parallel regions

OMP_GET_ANCESTOR_THREAD_NUM Returns, for a given nested level of the current thread, the thread number of ancestor thread

OMP_GET_TEAM_SIZE Returns, for a given nested level of the current thread, the size of the thread team

OMP_GET_ACTIVE_LEVEL Returns the number of nested, active parallel regions enclosing the task that contains the call

OMP_IN_FINAL Returns true if the routine is executed in the final task region; otherwise it returns false

OMP_INIT_LOCK Initializes a lock associated with the lock variable

OMP_DESTROY_LOCK Disassociates the given lock variable from any locks

OMP_SET_LOCK Acquires ownership of a lock

OMP_UNSET_LOCK Releases a lock

OMP_TEST_LOCK Attempts to set a lock, but does not block if the lock is unavailable

OMP_INIT_NEST_LOCK Initializes a nested lock associated with the lock variable

OMP_DESTROY_NEST_LOCK Disassociates the given nested lock variable from any locks

OMP_SET_NEST_LOCK Acquires ownership of a nested lock

OMP_UNSET_NEST_LOCK Releases a nested lock

OMP_TEST_NEST_LOCK Attempts to set a nested lock, but does not block if the lock is unavailable

Locks

Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - ending locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - ending locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - ending locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - ending locked region

#include <stdio.h>
#include <omp.h>

omp_lock_t my_lock;

int main() {

omp_init_lock(&my_lock);

#pragma omp parallel
{

int tid = omp_get_thread_num();
int i;

omp_set_lock(&my_lock);

for (i = 0; i < 5; ++i) {
printf("Thread %d - in locked region\n", tid);

}

printf("Thread %d - ending locked region\n", tid);

omp_unset_lock(&my_lock);

}

omp_destroy_lock(&my_lock);
} This could have been done with just an omp critical!

Output

Pthreads like flexibility, and pitfalls.

We now have the ability to start coding just about any kind of thread flow we can

imagine. And we can start creating all kinds of subtle and non-repeatable bugs. This is

normally where we start the fun of cataloging all of the ways we can get into trouble:

Race conditions

Deadlocks

Livelocks

Missing flush

For most applications you are more likely to have multiple data structures that are

updated by multiple threads. You will need to protect them with locks and critical

regions. Picture a hash map with all threads allowed to insert/delete/lookup.

Thread A Thread B

Lock(USB Drive) Lock(File)
Lock(File) Lock(USB Drive)
Copy(File) Copy(File)
Unlock(File) Unlock(USB Drive)
Unlock(USB Drive) Unlock(File)

Deadlock

But more advanced than pthreads

Pthreads were standardized well before modern issues like thread affinity and

transactional memory become important (we'll discuss those next).

The solution for the pthreads approach is a bunch of non-standard extensions and a lot

of very ugly boiler-plate code.

We are about to see how powerful OpenMP is. We are going to get the some very

powerful capabilities with:

• Not much effort

• No performance overhead

• Portability

Transactional Memory

As multi-core threading became dominant, the hardware vendors saw the need to help

increase the efficiency of access to contended data structures. The answer we find on

modern processors is transactional memory.

Transactional memory is hardware support to

capture the full state of the memory access

code and data, such that it can be done

speculatively and rolled back if there is a

conflict. If contention is low, this allows the

thread to behave as though it is lock-free.

Arm Transactional Memory Implementation

From their latest online guide.

This is tricky stuff. It is one of the things that bit Intel with security problems, and AMD

and Arm took a long time to deploy it themselves.

Hints

OpenMP gives us an easy way to let our atomic or critical regions, and our

omp_init_lock_with_hint and omp_init_nest_lock_with_hint to use this underlaying

hardware to our benefit. Just add one of the following hint clauses (or parameter to the

lock).

• omp_sync_hint_uncontended: low contention is expected in this

operation, that is, few threads are expected to perform the operation

simultaneously in a manner that requires synchronization.

• omp_sync_hint_contended: high contention is expected in this operation,

that is, many threads are expected to perform the operation simultaneously

in a manner that requires synchronization.

• omp_sync_hint_speculative: the programmer suggests that the operation

should be implemented using speculative techniques such as transactional

memory.

• omp_sync_hint_nonspeculative: the programmer suggests that the

operation should not be implemented using speculative techniques such as

transactional memory.

* Nested locks are locks that can be set multiple times, and keep a count.

Memory affinity has been a non-portable pain for decades. It has steadily grown to be a very important performance

consideration. Thanks to OpenMP, there is finally a portable way to deal with it.

Just on a single node (our concern for OpenMP) we have:

Affinity

• Registers (including vector registers)

• Caches (multiple levels)

• RAM (processor local or NUMA memory)

• HBM?

• Accelerators?

• NVM?

These are being accessed in various patterns by:

• Loops (hopefully vectorized)

• Threads

• Processes

• Cores

• Processors

ORNL Cray XC30 Node

Easy Data Affinity

Here is a good example of how easy it can be to request data/thread affinity for a couple of tasks
that we know share data.

void related_tasks(float* A, int n){

float* B;

#pragma omp task shared(B) depend(out:B) affinity(A[0:n])
{

B = compute_B(A,n);
}
#pragma omp task firstprivate(B) depend(in:B) affinity (A[0:n])
{

update_B(B);
}
#pragma omp taskwait

}

We can also mange these issues with explicit control of our thread placement or closely controlled
management of our memory allocation. These approaches have also lacked any standard methods.
We only have time to present the basics here. The documentation is comprehensive:

Thread placement:

OMP_PLACES environment variable. It has lots of options and fine control mapping.

Clauses on parallel directive: primary, close, spread

Memory Allocation:

allocate clause on all data sharing directives

allocate directive

omp_alloc() and associated functions

The specifiers on these follow, and give you some idea of the kinds of hints/suggestions you can
provide:

Thread Placement and Memory Allocation

The specifiers in the new spec give you some idea of how many ways we can characterize this.

distance ≈ near, far Specifies the relative physical distance of the memory space with respect to the task the request binds to.

bandwidth ≈ highest, lowest Specifies the relative bandwidth of the memory space with respect to other memories in the system

latency ≈ highest, lowest Specifies the relative latency of the memory space with respect to other memories in the system.

location = Specifies the physical location of the memory space.

optimized = bandwidth, latency, capacity, none Specifies if the memory space underlying technology is optimized to maximize a

certain characteristic. The exact mapping of these values to actual technologies is implementation defined.

pagesize = positive integer Specifies the size of the pages used by the memory space.

permission = r, w, rw Specifies if read operations (r), write operations (w) or both (rw) are supported by the memory space.

capacity ≥ positive integer Specifies the physical capacity in bytes of the memory space. available ≥ positive integer Specifies the

current available capacity for new allocations in the memory space.

OpenMP 5.0 Memory Hierarchy Awareness

Much earlier I mentioned that vector instructions fall into the realm of “things you hope the compiler

addresses”. However as they have become so critical achieving available performance on newer

devices, the OpenMP 4.0 standard has included a simd directive to help you help the compiler. There

are two main calls for it.

1) Indicate a simple loop that should be vectorized. It may be an inner loop on a parallel for, or it

could be standalone.

#pragma omp parallel

{

#pragma omp for

for (int i=0; i<N; i++) {

#pragma omp simd safelen(18)

for (int j=18; j<N−18; j++) {

A[i][j] = A[i][j−18] + sinf(B[i][j]);

B[i][j] = B[i][j+18] + cosf(A[i][j]);

}

}

}

OpenMP SIMD Extension

There is dependency that

prohibits vectorization.

However, the code can be

vectorized for any given vector

length for array B and for

vectors shorter than 18

elements for array A.

2) Indicate that a function is vectorizable.

#pragma omp declare simd

float some_func(float x) {

...

...

}

#pragma omp declare simd

extern float some_func(float);

void other_func(float *restrict a, float *restrict x, int n) {

for (int i=0; i<n; i++) a[i] = some_func(x[i]);

}

There are a ton of clauses (private, reduction, linear, reduction, etc.) that help you to assure safe

conditions for vectorization. They won’t get our attention today.

We won’t hype these any further. Suffice it to say that if the compiler report indicates that you are

missing vectorization opportunities, this adds a portable tool.

OpenMP SIMD Extension

flush - a step too far?

An example of the kind of low-level control you can achieve is the flush directive. An

experienced concurrent programmer may want to do risky stuff like reading and writing

shared variables from different threads (perhaps for rolling your own locks or mutexes). As

shared memory machines have cache issues and compiler instruction reordering that can

cause shared values to get out of sync, this is tricky business.

implicit barriers (as mentioned previously)

barrier (incurs synchronization penalty)

flush (no sync)

If you think you are wandering into this territory, a good reference for examples and

warnings is:

OpenMP Application Program Interface

http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf

Most likely none of you will find this level of control advantageous.

Complexity vs. Efficiency

How much you will gain in efficiency by using these more flexible (dangerous)

routines depends upon your algorithm. How asynchronous can it be?

OpenMP Library API

OMP_SET_NUM_THREADS

OMP_SET_LOCK

flush

.

.

.

OpenMP Directives

omp parallel for

omp parallel do

Password cracking

(Using work farming)

Matrix Multiply

Prime Number

Finding ?

The general question is, how much time are threads spending at barriers?

If you can’t tell, profiling will.

Complex Simple

Scheduling

#pragma omp parallel for private (j) \

reduction(+:not_primes)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes)

do i = 2,n

do j = 2,i-1

if (mod(i,j) == 0) then

not_primes = not_primes + 1

exit

end if

end do

end do

!$omp end parallel do
C Version

Fortran Version

We do have a way of greatly affecting the thread scheduling while still using do/for loops. That is

to use the schedule clause.

Let’s think about what happens with our prime number program if the loop iterations are just

evenly distributed across our processors. Some of our iterations/threads will finish much earlier

than others.

Scheduling Options

static, n Divides iterations evenly amongst threads. You can optionally specify the

chunk size to use.

dynamic, n As a thread finishes, it is assigned another. Default chunk size is 1.

guided, n Block size will decrease with each new assignment to account for

remaining iterations at that time. Chunk size specifies minimum (and

defaults to 1).

runtime Decided at runtime by OMP_SCHEDULE variable.

auto Let the compiler/runtime decide.

OpenMP 5 has now added modifiers (monotonic, nonmonotonic, simd) for use with the

above, but they seem not to be widely implemented yet.

Exercise 2: Improving Prime Number
(About 10 minutes)

Speed up the prime number count just using the scheduling options you have available.

1) Start with the prime_serial.c/f version in the OpenMP/Prime folder and then add the parallel

directives as per the previous lecture slides. See how much it speeds up on various thread counts.

Then…

2) Try various scheduling options to see if anything is effective at optimizing further. This

“empirical” approach is a perfectly reasonable, and safe, way to find some low-hanging fruit.

One Scheduling Solution

#pragma omp parallel for private (j) \

reduction(+:not_primes) \
schedule(dynamic)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes) schedule(dynamic)

do i = 2,n

do j = 2,i-1

if (mod(i,j) == 0) then

not_primes = not_primes + 1

exit

end if

end do

end do

!$omp end parallel do

C Version Fortran Version

Dynamic scheduling with a default chunksize (of 1).

Results

We get a pretty big win for little work and even less danger. The Fortran and C times

are almost exactly the same for this code.

Threads Default (s) Dynamic Speedup

Serial 43.6

2 32.0 21.8 1.5

4 18.5 10.9 1.7

8 9.8 5.4 1.8

16 5.1 2.7 2.0

32 2.5 1.3 1.9

64 1.3 0.69 1.9

128 2.8 0.70 4

500,000 iterations.

63X Serial!

OpenMP Environment
We've talked about a lot of tweakable configuration, and many of those parameters have multiple ways to set them (which

is helpful). One convenient way I like to get a snapshot of the system is to use the OMP_DISPLAY_ENV variable to display

most of the parameters. Just export OMP_DISPLAY_ENV=TRUE, or set it to VERBOSE for even more info.

OPENMP DISPLAY ENVIRONMENT BEGIN

_OPENMP='201611'

[host] OMP_CANCELLATION='FALSE'

[host] OMP_DEFAULT_DEVICE='0'

[host] OMP_DISPLAY_ENV='TRUE'

[host] OMP_DYNAMIC='FALSE'

[host] OMP_MAX_ACTIVE_LEVELS='2147483647'

[host] OMP_MAX_TASK_PRIORITY='0'

[host] OMP_NESTED='FALSE'

[host] OMP_NUM_THREADS: value is not defined

[host] OMP_PLACES: value is not defined

[host] OMP_PROC_BIND='false'

[host] OMP_SCHEDULE='static'

[host] OMP_STACKSIZE='4M'

[host] OMP_THREAD_LIMIT='2147483647'

[host] OMP_WAIT_POLICY='PASSIVE'

OPENMP DISPLAY ENVIRONMENT END

C++

• private /shared, etc. work with objects

constructors/destructor are called for private

things can get complicated with firstprivate, threadprivate, etc.

• Probably biggest question is std:vector

Safe if no reallocation: No push_back(), pop_back(), insert()

Iterators are even allowed in for loop here

• Other containers less likely to just work

For example, std::list (a doubly linked list) updated by multiple threads would be a

nightmare

• Note: MPI 3 and newer have dropped C++, so be aware if aiming for larger scalability

Information Overload?
We have now covered just about everything with the exception of the GPU oriented stuff. I hope you

recall how much we accomplished with just a parallel for/do. Let’s recap. In HPC the most common

approach is to:

Look at your large, time-consuming for/do loops first

Deal with dependencies and reductions

Using private and reductions

Consider scheduling

If you find a lot of barrier time (via inspection or profiler) then:

Sections

Tasks

Run-time library

Locks

Barriers/nowaits

There will be projects, such as graph oriented algorithms, where it will be more natural to

just start with tasks, or another paradigm.

