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Advanced  MPI



MPI Advanced Features
In the MPI Basics talk we only touched upon the core MPI routines.  Here we will discuss some of the 
advanced features that you are likely to use.  We’ve grouped them thematically as just “looking through 
the index” can be intimidating.

• Datatypes
• Collective Communication
• Topology (Communicators)
• Non-Blocking Communications
• Single-sided Communications (RMA)
• Shared Memory
• Hybrid Programming
• Performance Options
• Attributes
• Dynamic Processes
• MPI-IO
• Modern Fortran (and other languages)
• Library Support
• MPI Implementations



1993: Supercomputing 93 - draft MPI standard presented. 

1994: Final version of MPI-1.0 released 

1995: MPI-1.1

1996: MPI-2

1997: MPI-1.2

2008: MPI-1.3, MPI-2.1

2009: MPI-2.2

2012: MPI-3.0 standard approved

MPI Evolution

Although there are some general 
themes to various releases (3.0 has 
a lot of “ultra-scalability” features), 
we won’t review routines 
chronologically.  I’ve gathered each 
topic across all releases as it makes 
much more sense that way.



User Defined Data Types

User defined data types are often somewhere between organizationally useful, and 
indispensably convenient.  They serve two important purposes:

• Translation between formats
• Automatic conversion of data sent from a big-endian to little-endian node
• Not very common these days

• Noncontiguous messages
• Many cases, from rows and columns of arrays to dynamically allocated lists
• Serious performance implications



User Defined Data Types

There are two steps to using a defined data type:

1) Create the type using one of the multiple creation routines
MPI_Type_contiguous(count…) Could be used in our current Laplace.

MPI_Type_vector(count,…,stride…) Adds a stride.  Could be used for row/column.
MPI_Type_indexed() Varying strides and block sizes.
MPI_Type_create_subarray() What you would guess and very flexible.
MPI_Type_create_struct() Most general.
… more

These routines accept existing, possibly user-defined, types.  So they can be layered 
to build even more complex types.

2) Commit the type
MPI_Type_commit()



Vector Type
(stencil code example)

MPI_Type_vector(int count,int blocklength, int stride, MPI_Datatype oldtype,MPI_Datatype *newtype)

MPI_Datatype row, column ;
MPI_Type_vector ( COLUMNS, 1, 1, MPI_DOUBLE, &row );
MPI_Type_vector ( ROWS, 1, COLUMNS, MPI_DOUBLE , &column );
MPI_Type_commit ( &row );
MPI_Type_commit ( &column );
.
.
//Send top row to up neighbor 
MPI_Send(Temperature[1,1], 1, row, dest, tag, MPI_COMM_WORLD);
.
//Send last column to right hand neighbor (in the pictured layout)
MPI_Send(Temperature[1,COLUMNS], 1, column, dest, tag, MPI_COMM_WORLD);

Note that we are only sending 1 of each type, and that column and row sends look the same 
except for their type.  We also could have used the MPI_Type_contiguous() routine to define the 
row type:  MPI_Type_contiguous(ROWS,  MPI_DOUBLE, &ROW)



Indexed Type
(MD code example)

MPI_Type_create_indexed_block(int count, int blocklength,int displacements[], MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Datatype particle_type, buffer_type;
.
//When we create particle type it groups whatever the elements of
//particle_list really are: array of floats, C struct, …
.
//find particles on border and put their particle_list[]
//indices into displacements[]
.
.

MPI_Type_create_indexed_block(num_to_send, 1, displacements[],
particle_type, &buffer_type);

MPI_Type_commit (&buffer_type);

MPI_Send(particle_list, 1, buffer_type, left, tag, comm);

//And repeat every time!
MPI_Type_free(&buffer_type); 

particle_list

displacements

1 2 3 4 5 6

1 5 6



Indexed Type
(Receive Side)

Static size buffer:

MPI_Recv(incoming_particles, MAX_INCOMNG, particle_type, right, tag, comm, &status);

MPI_Get_count(&status, particle_type, &how_many);

Dynamically allocated buffer:

MPI_Probe(right, tag, comm, &status);

MPI_Get_count(&status, particle_type, &how_many);

MPI_Type_get_extent(particle_type, &lower_bound, &extent);

incoming_particles = (Particle *) malloc( how_many * extent);

MPI_Recv(incoming_particles, number, particle_type, right, tag, comm, &status);

Note that although we sent
buffer_type, we are receiving
particle_type.

Extent is the size, accounting
for any padding.  We will
see this in more detail with
structures.



Dynamic Memory
hIndexed Type

MPI_Type_create_hindexed_block(int count, int blocklength, int displacements[],MPI_Datatype oldtype, MPI_Datatype *newtype)

What if we want to send items from a linked list?  This is often a bunch of individually allocated items scattered around memory.  Our 
displacements are no longer nice element offsets in some array.  We need to specify actual memory addresses.

MPI_Aint displacements[MAX_LIST_SIZE];
.
.
while (not_at_end_of_list){

if (send_this_item){
MPI_Get_address(item_to_send, &displacements[number_to_send];
number_to_send++;

}
.
.

}

MPI_Type_create_hindexed_block(number_to_send, 1, displacements, item_type, &items_message_type);

MPI_Type_commit (&items_message_type);

MPI_Send(MPI_BOTTOM, 1, items_message_type, dest, tag, comm);

MPI_Type_free(&items_message_type);

We get the memory address of
each item we are going to send.

MPI_Aint is the MPI 
address type.

MPI_BOTTOM is used whenever
we are using absolute addresses.
It is usually just set to 0 for any
sane architecture.



Hand Packing
(Refusing to use datatypes)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm, int *size)
int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype, void *outbuf, int outsize, int *position, MPI_Comm comm)

We can assemble the buffer ourselves if we want.  No new data type will be required.

position = 0;

MPI_Pack_size(MAX_SEND_COUNT, item_type, comm, &buffsize);

send_buffer = malloc(buffsize);
…
…
while (not_at_end_of_list){

if (send_this_item){
MPI_Pack(item_to_send, 1, item_type, send_buffer, buffsize, &position, comm);

}
…
…

}

MPI_Send(send_buffer, position, MPI_PACKED, dest, tag, comm);

Position is both input 
and output.  It gets 
incremented as the
buffer grows.



Hand Unpacking
int MPI_Unpack(const void *inbuf, int insize, int *position, void *outbuf, int outcount, MPI_Datatype datatype, MPI_Comm comm)

MPI_Recv(recv_buffer, MAX_SEND_COUNT, MPI_PACKED, source, tag, comm, &status);

MPI_Get_count(&status, MPI_PACKED, &total);

position = 0;

while (position < total){
MPI_Unpack(recv_buffer, total, &position, &newitem, 1, item_type, comm);
}
…
…

}

We could also receive these wholesale:

MPI_Recv(recv_buffer, MAX_SEND_COUNT, item_type, source, tag, comm, &status);

MPI_Get_count(&status, item_type, &total);

Position is input and
output.  It gets updated 
as the message is
unpacked.



Hand Packing

And we can pack any combination of types that we wish:

struct {
int values[10];
char   name[STRING_SIZE];
double variance;
int total;

} to_send;

position =0;

MPI_Pack(&to_send.values, 10, MPI_INT, sendbuf, buffersize, &position, comm);
MPI_Pack(&to_send.name, STRING_SIZE, MPI_CHAR, sendbuf, buffersize, &position, comm);
MPI_Pack(&to_send.variance, 1, MPI_DOUBLE, sendbuf, buffersize, &position, comm);
MPI_Pack(&to_send.total, 10, MPI_INT, sendbuf, buffersize, &position, comm);

MPI_Send(sendbuf, position, MPI_PACKED, dest, tag, comm);

Note that we have to pay attention to this structure on the corresponding MPI_Unpack.

Position is both input 
and output.  It gets 
incremented as the
buffer grows.



Defining Structs
MPI_Type_create_struct(int count, int array_of_blocklengths[], MPI_Aint displacements[], MPI_Datatype array_of_types[], MPI_Datatype *newtype)
MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb, MPI_Aint *extent)
MPI_Type_create_resized(MPI_Datatype oldtype,MPI_Aint lb, MPI_Aint extent, MPI_Datatype *newtype)

We can define structs as actual MPI datatypes with MPI_Type_create_struct but it requires some attention to detail because of 
packing issues.  Due to alignment issues of all modern processors, structures will often be padded in implementation dependent ways.  A 
structure like:

struct {
char x;
int y;
double z;

} example;

will rarely occupy sizeof(char)+sizeof(int)+sizeof(double) bytes of memory.  Thus the correct way to define a struct in MPI is to:

1) Get the relative memory displacements of each member with MPI_Get_address.
2) Create a structure with MPI_Type_create_struct using these displacements.
3) Check the extent of the new datatype against the C size (using sizeof) with MPI_Type_get_extent.
4) If necessary, adjust the size to match using MPI_Type_create_resized.
5) Finally, commit the type with MPI_Type_commit.

The alternative, which only trades off portability to heterogeneous systems (an increasingly minor concern), is to simply use MPI_BYTE:

MPI_Send( &example_array[index], sizeof(example), MPI_BYTE, dest, tag, comm);

MPI_Recv( &receive_array[index], sizeof(example), MPI_BYTE, source, tag, comm, &status);

This is why “extents” and 
“lower bounds” pop up in 
datatype oriented routines.



Performance Implications of Datatypes

You may have the impression that datatypes are primarily a syntactical convenience.  While this is 
undoubtedly true in many cases, the other motivation for them is very much performance.  As we have 
seen elsewhere in MPI, memory copies are expensive.  By defining a datatype, you give the system a 
chance to just grab the data straight from memory and send it out.  Assembling everything into one buffer 
first will always require a copy.

This might not always be possible, and sometimes hand packing data is sensible.  But ask yourself if 
defining the location of the items to be sent might enable the system to avoid this extra copy.  Especially 
note that many HPC system deal with strided memory access particularly well.

You may have also noticed that some of our examples redefine the datatype every iteration.  That might 
seem like a lot of overhead.  But, if that defines a pattern that allows the system to avoid an extra memory 
copy, it can be well worth it.



Collective Communications

The Broadcast and reduce operations have more complex analogs that are very useful in a variety of 
algorithms.  Just like Bcast and Reduce, the benefit of using these routines, instead of point-to-point 
messages, is not only syntactical convenience, but also much better efficiency.

Keep in mind that these are called “collective” because every PE in the communicator must call these 
routines at the same time.

Let’s take a look at the basic idea, and then we’ll see the wide variety of related routines.



Scatter

234 67 2 77 0 9 112

34 67 2 77 0 9 112 2PE 0

PE 8PE 7PE 3 PE 6PE 5PE 4PE 1 PE 2

One PE has some data that should be distributed differently to other PEs.  Every PE in the communicator 
participates in this call:

MPI_Scatter(void* send_data, int send_count, MPI_Datatype send_datatype, void* recv_data, int recv_count,

MPI_Datatype recv_datatype, int root, MPI_Comm communicator)



Gather

234 67 2 77 0 9 112

34 67 2 77 0 9 112 2PE 0

PE 8PE 7PE 3 PE 6PE 5PE 4PE 1 PE 2

The exact opposite.  The other PEs have some data that you wish to collect on one PE.

MPI_Gather(void* send_data, int send_count, MPI_Datatype send_datatype, void* recv_data, int recv_count,

MPI_Datatype recv_datatype, int root, MPI_Comm communicator)



Scatter / Gather

There are several significantly different variations of these routines.  When you need them, they are very 
helpful:

MPI_Scatterv() Count can vary for each PE (uses an array for send_counts)

MPI_Gatherv() “”

The “All” versions mean results are returned to all processors.  No root parameter.

MPI_Allgather() Like Gather, but all processes receive result

MPI_Allgatherv() Allgather with varying count

MPI_Alltoall() Each process sends distinct data to each receiver.  Perfect for transpose or FFT.

MPI_Alltoallv() Count can vary

MPI_Alltoallw() Count, displacement and even datatype can vary (crazy flexible)

These are not as scalable and the MPI-3 standards group even considered deprecating vector collectives.  
Don’t use them for “exa-scale” codes.



Advanced Reduce

Reduce has some advanced variations and capabilities as well.

• Reduce can operate on arrays of data

float A[10], B[10];

.

MPI_Reduce(A, B, 10, MPI_FLOAT, MPI_MAX, 0, comm) 

PE 0 will have a max from different PEs in B.  Each will be the maximum in that element position.

• User defined reduction operations

int MPI_Op_create(MPI_User_function *user_fn, int does_operator_commute, MPI_Op *op) 

You can define you own reduction operations when necessary.

• Location of min and max

You can determine the PE of the min and max for each element using  operators MPI_MINLOC and MPI_MAXLOC.

However, your input and output arrays need to be “MPI pair” datatypes to hold the PE number.  Read the man pages…



More Advanced Reduce

• Allreduce

MPI_Allreduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 

Every PE gets result, no root.

• Reduce local

MPI_Reduce_local(const void *inbuf, void *inoutbuf, int count, MPI_Datatype datatype, MPI_Op op)

Apply any reduce operator to local data.   inoutbuff = inbuf (op) inoutbuff element by element.

• MPI_Scan,  MPI_Reduce_scatter

There are still more variations of limited general usefulness, but just what you need for certain operations.

Scan is good for certain load-balancing operations, while Reduce_scatter is exactly what you need for a distributed

array/vector multiply.  We can’t cover them all, but what you should take away is that if you find yourself writing

a critical communication pattern, take a quick look at the MPI function index to make sure you are not overlooking

the obvious.



Communicators & Topologies

Communicators make life much easier in MPI.  They enable three important capabilities:

• Groups (for algorithms)

• Topologies (for performance and decomposition)

• Contexts (for libraries)

Although I’ve probably just described what each of these mean to some degree, these are 
really best explained by example.



Communicators and Groups

The most basic way to think of communicators is as a way to break PEs into separate groups.  
You will most likely first encounter this when you want to have some PEs participate in an action 
while others do not.  This immediately makes collective operations problematic.  When using 
the COMM_WORLD communicator, all PE’s have to participate in every collective.  So, we will 
want to make our own sub-group.

Indeed, groups are one way MPI operates when creating sets of PEs.  First we create a group, 
then we manipulate it until it represents the PEs that we want, then we create a communicator 
representing that group.

This following  example illustrates how a group consisting of all but the 0 process of the World 
group is created. Then a communicator (comm_workers) is formed for that new group. The new 
communicator is used in a collective call just for the workers.  Then all processes execute a 
collective call in the MPI_COMM_WORLD context.



Communicators to enable control flow
main(int argc, char **argv)   {

int my_PE, send_data=1, recv_data1, recv_data2;
MPI_Group group_world, group_workers;
MPI_Comm comm_workers;
int ranks[] = {0};  //Ranks to exclude, just 0 here

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_PE);

MPI_Comm_group(MPI_COMM_WORLD, &group_world); 
MPI_Group_excl(group_world, 1, ranks, &group_workers);
MPI_Comm_create(MPI_COMM_WORLD, group_worker, &comm_workers); 

//Reduce just for workers
if(my_PE != 0){  

MPI_Reduce(&send_data, &recv_data1, 1, MPI_INT, MPI_SUM, 0, comm_workers);
}

MPI_Reduce(&send_data, &recv_data2, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

//Proper clean up
if (comm_workers != MPI_COMM_NULL) MPI_Comm_free(&comm_workers); //comm_workers is NULL on PE 0
MPI_Group_free(&group_world); 
MPI_Group_free(&group_workers); 

MPI_Finalize();

}

recv_data1  =  number of workers PE (PEs-1) on PE 1
recv_data2  =  number of world PEs on PE 0
Everything else is unknown



Group Commands

There are enough group manipulation routines that it is usually very direct to craft the group you 
require.

MPI_Group_compare

MPI_Group_difference

MPI_Group_excl

MPI_Group_incl

MPI_Group_intersection

MPI_Group_range_excl

MPI_Group_range_incl

MPI_Group_rank

MPI_Group_size

MPI_Group_translate_ranks

MPI_Group_union



Communicator Creation Commands
It is also possible to work directly with communicators.  This is what many of our topology oriented routines do.  
Here are a few of the basic versions:

MPI_Comm_create (Just used)

MPI_Comm_group (Just used)

MPI_Comm_dup (Duplicates)

MPI_Comm_split

Comm_split is pretty powerful.  It allows us to split a communicator into many fragments based upon a “color”.  
“key” can be used to determine ordering in the new communicator.

MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

We could replace the three MPI comm/group routines in the previous example with this “groupless” code:

if (myPE = 0) then color=0;

else color =1;

MPI_Comm_split(MPI_COMM_WORLD,  color, 0, & comm_workers);

The inconsequential difference would be that Comm_create returns a NULL communicator  to the excluded PE0, 
whereas PE 0 gets its own, isolated, comm_workers communicator with Comm_split.



Topologies
Communicators can be tools to make our data decomposition easier.

• Most MPI codes have a data decomposition that reflects the physical layout of the model.

• Often there is a locality relationship to the PE’s, such as “nearest neighbor”.

• If this logical topology can be properly mapped to the physical network and PE layout, it 
can greatly aid performance.

• At Petascale exploiting this is almost a necessity.

MPI’s topology routines will help us with these issues.  It has two general approaches to the subject:

• Cartesian topologies

• Graph relationships

We will look at them both.



Cartesian Topologies
The first thing to do is to create a communicator that captures our topology.  

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[], int periods[], int reorder, MPI_Comm *comm_cart)

(0,3) (4,3)

(0,0) (4,0)

int dims[2] = { 5, 4 };

int periods = { 0, 0 };

MPI_Cart_create(comm_old, 2, dims[], periods[], 1, &comm_2D);

Use reorder = 1 = true so that MPI can reorder the PEs in the most optimal relationship.

Excess processes get a MPI_COMM_NULL.  If we ran the above on 24 PEs, 4 would get that.  Too few processes is an error.

The new communicator now contains this relationship and we can use it in various ways going forward.



Cartesian Topologies Routines
How do we use this?  Perhaps the most important thing in a cartesian layout is to know who your 
immediate neighbors are.

MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int *rank_source, int *rank_dest)

(1,1)

For example, suppose that the PE that is in the (1,1) location 
for this new communicator wants to know where to send and 
receive for a left shift of data.  It would do this:

MPI_Cart_shift(comm_2D, 0, -1, &rank_source, &rank_dest);

PEs on the edge will get an MPI_PROC_NULL, unless there are periodic conditions, and then they would get 
the appropriate opposite PE.



Useful Cartesian Topologies Routines

There are a few other useful routines to manage yourself within a Cartesian topology:

MPI_Dims_create(int nnodes, int ndims, int dims[])

This will do the calculation of how to spread nnodes around some number of (perhaps constrained) dimensions.

MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[], int coords[])

Give it the comm and maxdims and it will return the full dims and the calling PEs coords.

MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

Give it any rank in the communicator and it will return the coords.

MPI_Cart_sub(MPI_Comm comm, const int remain_dims[], MPI_Comm *newcomm)

Can return any hyperplane of the communicator as a new communicator. For our 2D example, we could set remain_dims = { 1, 0} and each PE would get a communicator 
for the row it is in.

These routines (and others) overlap in capability, so there are usually several ways to accomplish any 
ultimate communication pattern.  We could do almost anything by setting up colors just so and using 
MPI_Comm_split and some math, but these often fit the problem better.



Graph Topologies
To capture topologies that aren’t strictly Cartesian, MPI has a graph API as well.  You might think it is 
mostly applicable to crazy, convoluted graph relationships.

PE

PE

PE

PE

PE

And, it could be.  But, there are a lot of FEA or dynamic 
load balanced data decompositions that don’t always look 
like simple Cartesian relationships.  Even something as 
simple as our “5 point stencil” 2D example can easily 
become a “9 point stencil”, which requires diagonal 
neighbors.

PE PE PE

PE PE PE

PE PE PE



Graph Topologies

MPI has three different interfaces to construct graphs.

• The original MPI-1 general graph topology.  Not scalable, so we will 
treat it as deprecated.

• Adjacent graph interface

• General graph interface

These last two avoid specifying the complete graph at any given PE.  This is generally what 
you want, and always what you need for a seriously scalable code.



Adjacent Graph Interface
This keeps all creation local, and hence is the preferred method.  Use whenever you know who your 
neighbors should be.

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,  int sources[],      int sourceweights[],
int outdegree, int destinations[], int destweights[],
MPI_Info info, int reorder,        MPI_Comm *comm_dist_graph)

0

4

2

3

1

Weights might be useful to the implementation. info might provide further hints to the system.
Allowing reordering will allow the implementation to chose a better (NP-hard!) mapping.

PE Indegree Sources Outdegree Dest

0 1 4 1 3

1 0 1 3

2 0 1 3

3 3 0,1,2 1 4

4 1 3 1 0



General Graph Interface
More complex and requires communication.  But it does allow any PE to specify any edge.  Use if you 
must.

MPI_Dist_graph_create(MPI_Comm comm_old, int n, int sources[], int degrees[], int destinations[],
int weights[], MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

0

4

2

3

1

It so happens that PEs 0 and 4 have the complete graph definition here.

PE Number Sources Degree
(dest per source)

Destinations

0 3 0,1,2 1,1,1 3,3,3

1 0

2 0

3 0

4 2 3,4 1,1 4,0

This could have countless variations.  Here is one.



Graph Query Interfaces

There routines allow you to find out who your neighbors are.

MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree, int *outdegree, int *weighted)

Give it the comm and maxdims and it will return the number of incoming and outgoing edges.  Also lets you know if weights are supplied.

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,  int sources[],      int sourceweights[],

int maxoutdegree, int destinations[], int destweights[])

Give it a communicator and the counts from above, and it will return sources, destinations and weights.

But so far, none of these routines actually accomplish any communication.  We can use all of our existing 
send and receive routines.  But, we also have some routines that really leverage these new 
communicators…



Neighborhood Collectives
This is the super scalable payoff for our “neighborhood aware” communicators.  We have operations which 
perform collective communications within our close neighborhood.  The two most important are:

MPI_Neighbor_allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Each PE i gathers data items from each PE j if an edge (j,i) exists in the topology graph, and each PE i sends the same data items to all PEs j where an edge (i,j) exists. The send 
buffer is sent to each neighboring PE and the l-th block in the receive buffer is received from the l-th neighbor.  This could be though of as a neighborhood Bcast, from the 
sending PEs perspective. 

MPI_Neighbor_alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Each PE i receives data items from each PE j if an edge (j,i) exists in the topology graph or Cartesian topology. Similarly, each PE i sends data items to all processes j where an 
edge (i,j) exists. This call is more general than MPI_NEIGHBOR_ALLGATHER in that different data items can be sent to each neighbor. The k-th block in send buffer is sent to 
the k-th neighboring process and the l-th block in the receive buffer is received from the l-th neighbor. 

The order of the send and receive buffers for graph topologies is the order of PEs returned by the neighbor 
query routine.

For Cartesian topologies the order is the order of dimensions.  Buffers for boundary PROC_NULL PEs must 
still exist, but aren’t read or written.



More Neighborhood Collectives
There are vector version of these collectives, to allow varying counts:

MPI_Neighbor_allgatherv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, const int recvcounts[], const int displs[],

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_alltoallv( void *sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtype,

void *recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtype, MPI_Comm comm)

The extra flexible w version allows us to mix different types.  This can be useful to allow an efficient in-place 
transfer (think about exchanging colums/row datatypes in this one call).

MPI_Neighbor_alltoallw( void *sendbuf, int sendcounts[], MPI_Aint sdispls[], MPI_Datatype sendtypes[],

void *recvbuf, int recvcounts[], MPI_Aint rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

and although we haven’t delved into non-blocking routines in a serious fashion yet, this is a good place to 
mention that we will have non-blocking versions of all of these as well.

MPI_Ineighbor_allgather()

MPI_Ineighbor_allgatherv()

MPI_Ineighbor_alltoall()

MPI_Ineighbor_alltoallv()

MPI_Ineighbor_alltoallw()



One neat new communicator feature 

MPI_Comm_create_group(MPI_Comm comm, MPI_Group group, int tag, MPI_Comm * newcomm)

MPI-3 added in a non-collective communicator creator.  Up until now all communicator routines have 
been collective.  This generally hasn’t been a burdensome limitation, but there are some nifty 
applications for a communicator that can be created independently by subsets of an existing 
communicator:

• We can load balance in flexible new ways where groups can redefine themselves.  A bunch 
of idle PEs can aggregate without requiring the super-pool to synchronize with them.

• We can route around a failed PE.  Previously we would need that PE to participate in 
creating a new comm, or else the others were permanently locked out of any collective 
operations.



Communicators Summary 

While communicators offer some organizational convenience to point-to-point 
communications (send and receive), we could always substitute our own bookkeeping.

However, all collective operations (bcast, reduce, barrier, gather, scatter and all their 
variants) are completely dependent on their communicator.  If we can’t define a proper 
communicator, we can’t use them.



Default MPI Messaging

PE 0

Send Queue

Receive
Queue

Array A

PE 1

Send
Queue

Receive
Queue

Array A Copy to Send

“MPI_Send”

Array A Copy Send

Array A Copy Received

“MPI_Recv”



Non-Blocking Messaging

We didn’t really give non-blocking messaging it’s fair shake in the MPI Basics talk.  Non-blocking sends and receives 
can make sending massive numbers of messages, or large messages, possible without deadlock or buffer overruns.

Imagine how this piece of code behaves as the message size becomes very large:

if(rank==0{
MPI_Send(x to process 1)
MPI_Recv(y from process 1)

}
if(rank==1){

MPI_Send(y to process 0);
MPI_Recv(x from process 0);

}

• At some point, the Send() will block until the other PE can absorb it.  Both sends end up blocking each other in a 
deadlock.  MPI_Ssend (“don’t return until receive has started”) will catch these immediately.

• Also very important is the fact that MPI_Isend() does not need to make an extra copy to protect the integrity 
of any not-quite-sent data.  This can be a huge win.



Not just a theoretical consideration

The Laplace solver used for our Hybrid Challenge competition is usually parallelized with a send/receive pattern like 
this:

PE 0

The classic “ghost zone” data exchange.

PE 1 PE 2 PE 3



Two Blocking Methods

There are two similar ways of coding this that we might try:

MPI_Send(to left)
MPI_Send(to right)
MPI_Recv(from left)
MPI_Recv(from right)

On Blue Waters they both work OK solving the beginning 1000x1000 problem.  But when we scale up to the full 
competition size (10000x10000) one of them hangs.  Where?

MPI_Send(to left)
MPI_Recv(from right)
MPI_Send(to right)
MPI_Recv(from left)

PE’s 1-3 are blocking sending to the left, and PE 0 is blocking on the send to the right.



Hung…

PE’s 1-3 are blocking sending to the left, and PE 0 is blocking on the send to the 
right.

PE 0 PE 1 PE 2 PE 3

Is our other solution truly the answer?  Note that using MPI_Ssend() here would have caught this problem right away!

MPI_Send(to left)
MPI_Send(to right)
MPI_Recv(from left)
MPI_Recv(from right)



Cascading Messages

At least the second solution doesn’t’ hang.  But it does results in a sequential process here that we don’t really want.

PE 0

We can do better, and without any complication.

PE 1 PE 2 PE 3

MPI_Send(to left)
MPI_Recv(from right)
MPI_Send(to right)
MPI_Recv(from left)



MPI_Sendrecv

For this particular situation, MPI has a ready answer

MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype, int dest,   int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

This does what you’d hope, and solves our problem for these kind of data shifts, but we can 
avoid these problems in general with a different approach.



Basic Non-Blocking Routines

As we said before, it is no big deal to modify your typical blocking algorithm to do this.  Add an 
“I” to the routine name, a “request” flag parameter, and check to see when operations have 
completed before using the data.  

MPI_Isend(void *buf, int count, MPI_Datatype datatype, int dest, int tag,MPI_Comm comm, MPI_Request *request)

MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status) 

MPI_Wait(MPI_Request *request, MPI_Status *status)

Also:

MPI_Waitall()
MPI_Waitany()
MPI_Waitsome()
MPI_Testall()
MPI_Testany()
MPI_Testsome()

And the useful variations:

MPI_Send_Init()
MPI_Recv_Init()
MPI_Start()
MPI_StartAll()

If you have unchanging communication patterns, you should really use these.



Non-Blocking Basics
Here is our “shifter” exercise done with non-blocking routines.

#include "mpi.h"

main(int argc, char **argv){

int size, rank, send, value_sent, value_recieved, tag=5;
MPI_Request reqs[2];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

send = rank+1;
if (rank == size-1) send = 0;

value_sent = rank+100;

MPI_Irecv(&value_recieved, 1, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &reqs[0]);
MPI_Isend(&value_sent, 1, MPI_INT, send, tag, MPI_COMM_WORLD, &reqs[1]);

/* We _could_ do things here while we wait and poll with MPI_Test() */

MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);

printf("PE: %d, Value %d\n",rank,value_recieved);

MPI_Finalize();

}



Send_init and Recv_init as used by a Summer Boot Camp Hybrid Challenge winner

call MPI_Send_Init(temperature(1,columns), rows, MPI_DOUBLE_PRECISION, right, lr, MPI_COMM_WORLD, request(1), ierr)
call MPI_Recv_Init(temperature_last(1,0), rows, MPI_DOUBLE_PRECISION, left, lr, MPI_COMM_WORLD, request(2), ierr)
// 8 of these as winning solution did a 2D (left, right, up, down) decomposition on 10,000 x 10,000 size problem

.

.

do while ( dt_global > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1) )

enddo
enddo

.

.
call MPI_StartAll(8,request,statuses)

dt=0.0
.

do j=1,columns
do i=1,rows

dt = max( abs(temperature(i,j) - temperature_last(i,j)), dt )
temperature_last(i,j) = temperature(i,j)

enddo
enddo

.

.
call MPI_WaitAll(8,request,statuses,ierr)

.

.
enddo

Allow communications to 
overlap with the 
temperature_last update 
and maximum delta search.

Make sure all is 
complete before 
using this data in the 
next iteration.



Mixing Blocking and Non-Blocking Messaging

You can mix and match blocking and non-blocking send/recv routines:

if(rank==0{
MPI_Isend(x to process 1)
MPI_Recv(y from process 1)

}
if(rank==1){

MPI_Isend(y to process 0);
MPI_Recv(x from process 0);

}

This solves our deadlock (and improves our performance: no extra buffer copy).  Irecv() might 
save us another buffer copy.  You can not mix blocking and non-blocking collectives.



Other Non-Blocking Routines

Almost every applicable MPI routine has a non-blocking version.  Just add “I” to the routine 
name and add the “request” parameter.  They operate pretty much as one would expect.

There is one that catches special attention,  the non-blocking barrier:

MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)

What use could a non-blocking barrier possibly have?  The most common, and quite useful, is 
to let the other PEs know “I’m ready to move on (call MPI_Ibarrier), but while I am waiting I 
am going to go ahead and do something useful.  I’ll keep checking (MPI_Test) to see when the 
rest of you are ready to move on too”.



Optimized MPI Messaging

Send Queue

Receive
Queue

Array A

Send
Queue

Receive
Queue

Array A Copy Received

Array A Copy Received

We now have the tools to control much of the buffering and synchronization of our cooperative message passing.  If 
both ends do the right thing.

This

or

this

Right choice 
of:
Ssend()
Isend()
.
.

Right match of:
Irecv()
Recv_init()
.
.

or more…



Single Sided Communications

What is the advantage of single-sided communications?

• Performance.  Most of the time we can envision our problem as simply a distribution of data 
that needs to get from here to there during the communication phase.  All the ordering, 
buffering and synchronization that message passing implies is just overhead.

• Algorithmic.  What if I have a global counter somewhere that gets sporadically updated by 
random PEs?  Perhaps it tracks overflows in the data on all the PEs.  How to I do this with 
cooperative message passing?  Do I have to dedicate a PE to poll for random messages?  
Shouldn’t this be simpler?



The directness of Put

Send Queue

Receive
Queue

Array A

Send
Queue

Receive
Queue

Array A

Indeed, singled-sided communications has the ultimately direct capability of just cramming data into another PE at will.  
This has the previously mentioned advantages.  Let’s consider some of our obligations when using this method.

MPI_Put

No MPI_Recv!



Remote Memory Access

MPI refers to these types of operations as Remote Memory Access (RMA).  It requires three 
processes:

1. Define data windows

2. Move Data

3. Know when it has finished moving

We’ll examine each of these, including their important variations.  But first, let’s just look at 
them in action.



Finding Pi with Single-sided Communication
Adapted from the excellent Argonne MPI Pages (which you should peruse)

#include "mpi.h" 

#include <math.h> 

int main(int argc, char *argv[]) 

{ 

int n, myid, numprocs, i; 

double PI25 = 3.141592653589793238462643; 

double mypi, pi, h, sum, x; 

MPI_WIN nwin, piwin; 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

//Real window only on PE 0

if (myid == 0) {

MPI_Win_create(&n, sizeof(int), 1, MPI_INFO_NULL, MPI_COMM_WORLD, &nwin); 

MPI_Win_create(&pi,sizeof(double), 1, MPI_INFO_NULL, MPI_COMM_WORLD, &piwin);  

}

//But Win_create is collective operation so other PEs must still participate

else { 

MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &nwin); 

MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &piwin); 

}

while (1) { 

if (myid == 0) { 

printf("Enter the number of intervals: (0 quits) "); 

scanf("%d",&n); 

pi = 0.0;

} 

MPI_Win_fence(0, nwin); 

if (myid != 0)  

MPI_Get(&n, 1, MPI_INT, 0, 0, 1, MPI_INT, nwin); 

MPI_Win_fence(0, nwin); 

h   = 1.0 / (double) n; 

sum = 0.0; 

for (i = myid + 1; i <= n; i += numprocs) { 

x = h * ((double)i - 0.5); 

sum += (4.0 / (1.0 + x*x)); 

} 

mypi = h * sum; 

MPI_Win_fence(0, piwin); 

MPI_Accumulate(&mypi, 1, MPI_DOUBLE, 0, 0, 1, MPI_DOUBLE, MPI_SUM, piwin); 

MPI_Win_fence(0, piwin); 

if (myid == 0)  

printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25));

} 

MPI_Win_free(&nwin); 

MPI_Win_free(&piwin); 

MPI_Finalize(); 

} 



Creating Windows

With RMA we must carefully define the target regions for remote accesses.  This is a collective 
operation.

MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win *win)

MPI_Win_free(MPI_Win *win)

This is the area that we are permitting  RMA to access on our own local PE.  We will be using 
displacements to refer to locations within the windows and we define those here.

If you need to allocate memory for the window after it has been created, you also have these 
new routines, which we won’t get into: 

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)
MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)
MPI_Win_detach(MPI_Win win, const void *base)



Moving Data

The routines used to move the data are pretty basic:

MPI_Put(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_Accumulate(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

For accumulate the operations can only be the predefined ones, and the basic components of the datatypes must be all the same predefined types (vector of MPI_INT fine).

There are versions of these routines that return request flags as well.

MPI_Rput(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

MPI_Rget(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

MPI_Accumulate(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win, MPI_Request *request)



MPI_Win_fence

The most basic method for managing when it is safe to access data in the window is the fence routine:

int MPI_Win_fence(int assert, MPI_Win win)

It is collective over all the PEs in the window and completes any operations since the last fence and assures that all local 
data is updated both to and from the window.

The easy rule* is to:

• use MPI_Win_fence to separate the RMA and local access (computation)  sections of code.

• do not overlap RMA operations (access the same section of any window) within one of these fenced regions.

The available assert options allow for possibly substantial optimization.

MPI_MODE_NOSTORE - the local window was not updated by local stores (or local get or receive calls) since last synchronization.
MPI_MODE_NOPUT - the local window will not be updated by put or accumulate calls after the fence call, until the ensuing fence.
MPI_MODE_NOPRECEDE - the fence does not complete any sequence of locally issued RMA calls. Must be given by all PEs in the group.
MPI_MODE_NOSUCCEED - the fence does not start any sequence of locally issued RMA calls. Must be given by all PEs in the group.

*Stricter than necessary, 
but an excellent guide 
until you understand the 
intricacies.

Ex: If there are no put 
operations on the window 
in the fenced region, you 
could have both gets (from 
other PEs) and local 
loads/reads.



Separate RMA and local access
MPI_Win_fence clearly separates these two regions.

#include "mpi.h" 

#include <math.h> 

int main(int argc, char *argv[]) 

{ 

int n, myid, numprocs, i; 

double PI25 = 3.141592653589793238462643; 

double mypi, pi, h, sum, x; 

MPI_WIN nwin, piwin; 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

//Real window only on PE 0

if (myid == 0) {

MPI_Win_create(&n, sizeof(int), 1, MPI_INFO_NULL, MPI_COMM_WORLD, &nwin); 

MPI_Win_create(&pi,sizeof(double), 1, MPI_INFO_NULL, MPI_COMM_WORLD, &piwin);  

}

//But Win_create is collective operation so other PEs must still participate

else { 

MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &nwin); 

MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &piwin); 

}

while (1) { 

if (myid == 0) { 

printf("Enter the number of intervals: (0 quits) "); 

scanf("%d",&n); 

pi = 0.0;

} 

MPI_Win_fence(0, nwin); 

if (myid != 0)  

MPI_Get(&n, 1, MPI_INT, 0, 0, 1, MPI_INT, nwin); 

MPI_Win_fence(0, nwin); 

h   = 1.0 / (double) n; 

sum = 0.0; 

for (i = myid + 1; i <= n; i += numprocs) { 

x = h * ((double)i - 0.5); 

sum += (4.0 / (1.0 + x*x)); 

} 

mypi = h * sum; 

MPI_Win_fence(0, piwin); 

MPI_Accumulate(&mypi, 1, MPI_DOUBLE, 0, 0, 1, MPI_DOUBLE, MPI_SUM, piwin); 

MPI_Win_fence(0, piwin); 

if (myid == 0)  

printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25));

} 

MPI_Win_free(&nwin); 

MPI_Win_free(&piwin); 

MPI_Finalize(); 

} 



Passive Target RMA

RMA as we’ve used it thus far is not truly “single-sided” as the target PEs have to participate in 
the MPI_Win_fence calls.  They are collective, and the originating PEs can’t use any of the 
transferred data until they make this call.

MPI has another mode that eliminates this requirement, and the target PE is truly passive.  This 
starts to look a lot like a true SMP, where one core can just access any memory location 
unbeknownst to the other cores.

The main refinement here is that instead of synchronizing all the windows in a collectively 
defined fenced region, we will target a specific window on a single PE for a period controlled by 
locks.  The rules we used to separate local access and to not overlap operations apply to these 
locked regions the same way.



MPI_Win_lock

Our more targeted approach specifies a target PE:

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
MPI_Win_unlock(int rank, MPI_Win win)

The lock types can be:

MPI_LOCK_SHARED – allow other operations on this window.
MPI_LOCK_EXCLUSIVE – do not.

Assert is an optimization flag. We will default to 0.

Use these appropriately.  Shared may be fine with non-overlapping regions of the window, or even 
accumulate calls to the same region.

Note that a PE should usually lock its own window when accessing it.



MPI_Win_allocatae

MPI allows implementations to demand that passive memory windows are allocated in specific ways.  MPI 
has a number of memory allocation routines, but the most straightforward for this purpose is simply:

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
void *baseptr, MPI_Win *win)

size and disp are in bytes.  info is for implementation hints and NULL is always valid.

Fortran 2008 has a different recommended procedure. Older Fortran has some other specific concerns, 
which are easily dealt with, but not on this slide.



Passive Counter

We can now implement that randomly updated counter that we mentioned before.  It is as 
simple as:

…

value = 1;

MPI_Win_lock( MPI_LOcK_EXCLUSIVE, rank, 0, win );

MPI_Accumulate( &value, 1, MPI_INT, rank, 0, 1, MPI_INT, MPI_SUM, win );

MPI_Win_unlock( rank, win );

…

Simple enough.  What if we want to leverage this code to create a mutex lock.  That can be 
quite useful when trying to share global resources amongst the PEs.

We will use a classic mutex technique where we just read/add a counter that rests at 0.  If it 
is 1, then we know we just got the resource and later we can free it by decrementing.

If it is not 1, then we decrement it back and try again later.



Passive Mutex
…

value = 1;

MPI_Win_lock( MPI_LOcK_EXCLUSIVE, rank, 0, win );

MPI_Accumulate( &value, 1, MPI_INT, rank, 0, 1, MPI_INT, MPI_SUM, win );

MPI_Get( &counter, 1, MPI_INT, rank, 0, 1, MPI_INT, win );

MPI_Win_unlock( rank, win );

…

It is actually quite difficult to do this with the tools we have, and this situation is familiar to 
anyone doing multi-threaded coding.  Here, as there, the answer to is have nice atomic 
operations to facilitate all these kinds of things.

Order

not

guaranteed



MPI_Fetch_and_op
MPI provides the very targeted atomic operation:

MPI_Fetch_and_op(void *origin_addr, void *result_addr, MPI_Datatype datatype,

int target_rank, MPI_Aint target_disp, MPI_Op op, MPI_Win win)

which is efficient and makes our mutex trivial, and the more general:

MPI_Get_accumulate(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,

void *result_addr, int result_count, MPI_Datatype result_datatype,

int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win

There is also an atomic operation that is quite useful in distributed data structures like lists.

MPI_Compare_and_swap(void *origin_addr, const void *compare_addr, void *result_addr,      

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp, MPI_Win win)

This function compares one element of type datatype in the compare buffer compare_addr with the buffer at offset 
target_disp in the target window specified by target_rank and win and replaces the value at the target with the value 
in the origin buffer origin_addr if the compare buffer and the target buffer are identical. The original value at the 
target is returned in the buffer result_addr.



A few more useful synch routines
There are a number of related synchronization routines that allow for finer control (i.e. fancier than our rule of 
thumb).  Note the subtle distinctions.  Most of the useful ones are:

MPI_Win_lock_all(int assert, MPI_Win win)

Starts an RMA access epoch to all processes in win, with a lock type of MPI_Lock_shared. During the epoch, the calling 
process can access the window memory on all processes in win by using RMA operations. A window locked with 
MPI_Win_lock_all must be unlocked with MPI_Win_unlock_all. This routine is not collective, the all refers to a lock on 
all members of the group of the window. 

MPI_Win_flush(int rank, MPI_Win win)

MPI_Win_flush completes all outstanding RMA operations initiated by the calling process to the target rank on the 
specified window. The operations are completed both at the origin and at the target. 

MPI_Win_sync(MPI_Win win)

The call MPI_Win_sync synchronizes the private and public window copies of win. For the purposes of synchronizing 
the private and public window, MPI_Win_sync has the effect of ending and reopening an access and exposure epoch 
on the window (note that it does not actually end an epoch or complete any pending MPI RMA operations). 

MPI_Win_flush_all(MPI_Win win)

All RMA operations issued by the calling process to any target on the specified window prior to this call and in the 
specified window will have completed both at the origin and at the target when this call returns. 



Scalable Synchronization RMA

There is one last approach that is targeted at very large scalability.  It assumes an active target 
(like our fence approach).   But the routines that replace fence are not collective.  They are 
called only on the origin and target PEs.  Thus the synchronization can be confined to 
neighborhoods and be as scalable as the application.

These routines work with groups.  We can use all the usual group management routines to 
define our groups, and we probably start with MPI_Win_get_group(MPI_Win win, 

MPI_Group *group) to get a group from our window – which will be the same as the group 
of the communicator used to create the window.



Scalable Sync RMA Routines
The idea here is that each end defines the period where it is either exposing or targeting a window.

The target PE indicates when its windows may be accessed with:
MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

…

…

MPI_Win_wait(MPI_Win win)

the originating PE uses:
MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

…

…

MPI_Win_complete(MPI_Win win)

Like fence, there are some asserts to aid with optimization (MPI_MODE_NOCHECK,MPI_MODE_NOSTORE,MPI_MODE_NOPUT).

Within these regions we use put, get, etc. the same as we would elsewhere.



MPI Communication Hierarchy

Let’s review all of the mechanisms available.  Ranked by a general scalability and efficiency.

1. Blocking Message Passing

2. Non-blocking Message Passing

3. RMA Active Target (“fence”)

4. RMA Passive Target (“Win_lock”)

5. RMA Scalable Synchronization (“Win_post”)



Dynamic Process Management

This paradigm can seem tempting, but as most MPP’s require you to run on a 
specific number of PE’s, adding tasks can often cause load balance problems –
if it is even permitted.  For optimized scientific codes, this is rarely a useful 
approach.

It can be nice for dynamic work farming algorithms, but these have also often 
been implemented in MPI 1.x styles with fairly simple queue mechanisms.



Dynamic Process Management
MPI_Comm_spawn creates a new group of tasks and returns an intercommunicator:

MPI_Comm_spawn(command, argv, numprocs, info, root, comm, intercomm, errcodes)

– Tries to  start numprocs process running command, passing them command-line 
arguments argv.

– The operation is collective over comm.

– Spawnees are in remote group of intercomm.

– Errors are reported on a per-process basis in errcodes.

– info used to optionally specify hostname, archname, wdir, path, file.



MPI-IO

MPI-2 Introduced routines, usually referred to as “MPI_IO”,  building on the MPI 
concepts of:

• Collective operations (to combine IO)

• Datatypes (new “distributed” datatypes to describe data scattered over PEs)
– Skip unneeded data (ex. ghost zones)

– Regroup data (subarrays)

• Non-blocking operations (to enable asynchronous/background IO)

• Portable file formats (based on standard MPI datatypes)

A great implementation could leverage all of these to do smart buffering and coalescing 
and get great performance.  Unfortunately, this is very hard to do.



Parallel IO

File

PE 8PE 7PE 3 PE 6PE 5PE 4PE 1 PE 2

A baseline IO operation for an parallel code might be something like the below for checkpointing a 
very regular data structure.  A more difficult case might be with every PE doing irregular and random 
data reads and writes.  But even this case is sufficient to demonstrate a typical IO bottleneck.



Parallel Disk System
A physical disk system looks something like the below (a simplified Lustre):

OST OST OST

Bottleneck Bottleneck Bottleneck



Optimized Parallel IO
Often, given the specific bandwidths and other limits, the optimal solution will look like:

OST OST OST



MPI  IO  Answer
In practice, MPI-IO is often not able to reflect these realities.  Fortunately, only a few 
parameters are usually required to comprehend common IO configurations.  In 
particular, the number of PEs to IO channel (“OST”) or likewise the optimal number of 
simultaneous reads/writes.

Also fortunately, this adaption is usually easily added into MPI codes as:

• IO is often already isolated in a few sections of code
• MPI is natural at handling the internal communications
• POSIX IO works fine at the output end

We do not want to diminish the potential for other issues.  Writing irregular data that 
can dump and restart on varying numbers of PEs can take some thought.  Just don’t 
commit to an MPI-IO abstraction to handle everything unless you can afford to back off 
if performance issues arise.



Fortran 90
I hope any Fortran programmers out there are using modern Fortran, and Fortran 2003 and 2008 bring a lot to the table.  
Using mpi_f08 adds some benefits (can leave off error parameter, for one).  However, there is one obviously useful F90 
syntactical nicety that has a subtle problem:

real, dimension (ROWS,COLUMNS) :: temperature 

…

call MPI_Isend(temperature(1,1:COLUMS), COLUMNS, MPI_REAL,…

This seems like a perfectly reasonable way to send a row without getting involved with MPI datatypes.  However what is 
happening is that Fortran is allocating a contiguous buffer that it sends to the MPI routine.  So far, so good.  But, as far as 
the compiler can tell, that buffer can be reclaimed right after that call.  It does not know that it shouldn’t disturb this until 
some request flag is set later.  End result: possibly sending deallocated memory.

MPI-3 allows one to test if the compiler is savvy about this (MPI_SUBARRAYS_SUPPORTED = .TRUE. or using 
ASYNCHRONOUS variables). Stick with MPI datatypes if you are unsure, although the current compiler situation is 
continuously improving.



C++

• MPI committee deprecated the C++ binding in MPI 2.2

• It is now removed in MPI 3.0

• Poor overall integration in the C++ environment (especially the STL)

• Alternative: Boost.MPI

– world.send( 1, 1, 4055 );   (rank,tag,data)

– Does have substantial performance penalty

– No streams

– Does not use MPI_Datatypes but instead serializes data structs with perf penalty

– No default params

• A shame as a lot of MPI routine parameters can be either inferred by the compiler (type/size of 
sent/received data) or defaulted (tag = 0, comm = MPI_COMM_WORLD, status = 
MPI_STATUS_IGNORE)



Python

from mpi4py import MPI

from numpy import arange

from math   import sqrt

comm = MPI.COMM_WORLD

my_pe_num = comm.Get_rank()

intervals = 0

if my_pe_num == 0:

intervals = int(input("How many intervals? "))

intervals = comm.bcast(intervals, root=0)

mypi = 0

h     = 2/intervals

start = ( my_pe_num *2  / comm.Get_size()) -1

end   = ((my_pe_num+1)*2  / comm.Get_size()) -1

for x in arange(start, end, h):

mypi = mypi + h * 2* sqrt(1-x*x)

pi = comm.reduce(mypi, op=MPI.SUM, root=0)

if my_pe_num == 0:

print("Pi is approximately %f" % pi)

print("Error is %f" % (pi-3.14159265358979323846)); 

Python lacks effective threading, so multi-processing is the only real option for scalability. The most 
common MPI bindings do provide for some elegant coding. Here is our "finding Pi" program.



Python with NumPy

from mpi4py import MPI

import numpy

comm = MPI.COMM_WORLD

my_pe_num = comm.Get_rank()

# explicit MPI datatypes

if my_pe_num == 0:

data = numpy.arange(100, dtype='i')

comm.Send([data, MPI.INT], dest=1, tag=0)

elif my_pe_num == 1:

data = numpy.empty(100, dtype='i')

comm.Recv([data, MPI.INT], source=0, tag=0)

# inferred MPI datatypes

if my_pe_num == 0:

data = numpy.arange(100, dtype=numpy.float64)

comm.Send(data, dest=1, tag=1)

elif my_pe_num == 1:

data = numpy.empty(100, dtype=numpy.float64)

comm.Recv(data, source=0, tag=1)

As with many things Python, you really want to use the NumPy libraries. In which case you can gain some 
performance back (keep your expectations reasonable) with the Upper Case, NumPy buffer, routines.



Other Languages

Bindings are available for at least:

• Perl

• R

• Ruby

• Java

• .NET



Attributes
The MPI committee has decided the algorithmic utility of a small key store database is useful enough that 
they have added such a capability to three classes of objects:

• Communicators
• Datatypes
• RMA Windows

For each of these there are routines to:

• Create Key
• Free Key
• Set Attribute
• Get Attribute 
• Delete Attribute

One can then store and retrieve various values. These capabilities are particularly useful for writing libraries. 
There are also some useful pre-defined attributes which you may notice in the documentation.



MPI_Wtime: trivial but awesome

This is about as simple as a routine gets, but it brings some much needed portability as a 
useful high-resolution timer.  You will find yourself using it often.

double start_time, total_time; 

start_time = MPI_Wtime();

.

....  stuff being timed  ... 

.

total_time = MPI_Wtime() – start_time;

MPI_Wtick() will return the timer resolution.  This is usually microseconds or better on HPC 
platforms. 



MPI-3.1
I have made an effort to ignore the historical development of these various routines, as the 
improvements along the way have made the overall library more coherent. So why get distracted by 
what came when?

However, it is nice to see what direction this area is heading.  So what did MPI-3 introduce?  
Primarily features needed to support Exascale computing:

• Collective Communications and Topology 
• Fault Tolerance
• Remote Memory Access
• Hybrid Programming

And a few areas that needed improvement:

• Fortran Bindings
• Tools Support



MPI-3.1
Rapid adoption

• It is supported in the two “families” of implementations that count:

– MPICH and derivatives (MVAPICH, Intel MPI, etc.)
– Open MPI

• Returns to core philosophy of “The standard does not specify operations that 
require more operating system support than is currently standard.”

– Interrupt driven receives
– Remote execution
– Active messages
– Programming tools
– Debugging facilities



• Fault tolerance
– Not completely finished, but not going to be a transparent solution.  More like a set of defined 

behaviors that allow an application to cope with PE failure.

• Remote Memory Access
– Extends and defines RMA (one-sided communication) requirements in ways that enable more scalable 

and more flexible performance.  Really important for PGAS implementations (UPC and Co-Array 
Fortran), but also for current RMA apps.  Non-blocking RMA, strided gather/scatter, etc.

• Hybrid Programming
– Improved definition of 2.0 threading mechanism for hybrid computing

• OpenMP
• OpenACC
• Pthreads
• PGAS languages (UPC, Co-Array Fortran)
• Intel TBB
• Cilk
• CUDA
• OpenCL
• Intel Ct. 

MPI-3.1
Exascale Architecture Anticipation



MPI-3.1
Making your programming life easier

• Fortran 90 interface brought up to Fortran 2008 standards
– Better type checking (how many of you could have used that today?)

– Array subsections (these would be great for your Laplace code)

– IERROR optional (looks like we beat the programming pedants into submission)

– and more…

• Tools Support
– Standardize and extend the current hooks that MPI debuggers and profilers use.  Only good news 

for programming environment moving forward.



Which features to use?
As of  MPI-3.1 there are around 450 routines in the library.  How do you know where to start?

1. Design your algorithm using the send/recv/isend/irecv family.  In the uncommon event that you find real 
algorithmic limitations with the capability there, then look deeper into more advanced options.

2. After you have turned your algorithm into working code, you might find that one-sided communication is 
a useful optimization.  You can migrate your code to that level without a complete revision.

3. If you are ready to target 100K+ processors, then MPI-3 has useful capability.  And you won’t find it 
intimidating at that point.

Of course this is just a general guide.  You may find a more advanced feature central to your needs, or you may 
wish to forego any unnecessary refactoring and just target a final optimized version.  The key concept is that for 
the vast majority of codes, once you have your data decomposition, the communication can be incrementally 
optimized.  And once you have experience with the MPI-1 level routines, you will find the additional routines to 
be familiar variations on known themes.



Pop   Quiz
Here is a good test of MPI understanding.  What is the result of this code on 8 PEs?

if (rank % 2 == 0) // Even processes

{

MPI_Allreduce(&rank, &evensum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

if (rank == 0) printf("evensum = %d\n", evensum);

}

else // Odd processes

{

MPI_Allreduce(&rank, &oddsum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

if (rank == 1) printf("oddsum = %d\n", oddsum);

}

A) evensum=16   oddsum=12

B) evensum=12   oddsum=16

C) evensum=28   oddsum=28

D) evensum=6     oddsum=22
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