
Pooling

Courtesy: Chris Olah

A Groundbreaking Example

Among the several novel techniques combined in this work (such
as aggressive use of ReLU), they used dual GPUs, with different
flows for each, communicating only at certain layers. A result is
that the bottom GPU consistently specialized on color
information, and the top did not.

These are the 96 first layer 11x11 (x3, RGB, stacked here) filters from AlexNet.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Let's Start Small

....

....
Epoch 10/10
60000/60000 [==============================] - 12s 198us/sample - loss: 0.0051 - accuracy: 0.9989 - val_loss: 0.0424 - val_accuracy: 0.9874

Early CNN Results

Primitive CNN

model.summary()
__
Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
max_pooling2d_1 (None, 13, 13, 32) 0
__
flatten_1 (Flatten) (None, 5408) 0
__
dense_38 (Dense) (None, 100) 540900
__
dense_39 (Dense) (None, 10) 1010
==
Total params: 542,230
Trainable params: 542,230
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Scaling Up The CNN

....

....
Epoch 15/15
60000/60000 [==============================] - 34s 566us/sample - loss: 0.0052 - accuracy: 0.9985 - val_loss: 0.0342 - val_accuracy: 0.9903

Deeper CNN Results

Deeper CNN

model.summary()
__
Layer (type) Output Shape Param #
==
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
__
conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
__
max_pooling2d_3 (None, 12, 12, 64) 0
__
flatten_3 (Flatten) (None, 9216) 0
__
dense_42 (Dense) (None, 128) 1179776
__
dense_43 (Dense) (None, 10) 1290
==
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

Overfitting

One solution is to keep using

higher order terms, but to

penalize them. These

regularization hyperparameters

that enable our solution to have

good generalization will show

up again and again throughout

your machine learning

endeavors.

Think of this as Occam's Razor

for machine learning.

Dropout

We need some form of regularization to help with the
overfitting. One seemingly crazy way to do this is the
relatively new technique (introduced by the venerable
Geoffrey Hinton in 2012) of Dropout.

Some view it as an ensemble method that trains multiple data models simultaneously. One neat perspective
of this analysis-defying technique comes from Jürgen Schmidhuber, another innovator in the field; under
certain circumstances, it could also be viewed as a form of training set augmentation: effectively, more and
more informative complex features are removed from the training data.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')

]))

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

CNN With Dropout

Parameter is fraction to drop.

....

....
Epoch 15/15
60000/60000 [==============================] - 40s 667us/sample - loss: 0.0187 - accuracy: 0.9935 - val_loss: 0.0301 - val_accuracy: 0.9919

Help From Dropout

Dropout CNN

model.summary()

Layer (type) Output Shape Param #
===
conv2d_12 (Conv2D) (None, 26, 26, 32) 320

conv2d_13 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_7 (None, 12, 12, 64) 0

dropout_4 (Dropout) (None, 12, 12, 64) 0

flatten_7 (Flatten) (None, 9216) 0

dense_50 (Dense) (None, 128) 1179776

dropout_5 (Dropout) (None, 128) 0

dense_51 (Dense) (None, 10) 1290
===
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

CNN with Dropout 99.2

Batch Normalization

Another "between layers" layer that is quite popular is Batch Normalization. This technique really helps with vanishing or exploding
gradients. So it is better with deeper networks.

• Maybe not so compatible with Dropout, but the subject of research (and debate).

• Maybe Apply Dropout after all BN layers: https://arxiv.org/pdf/1801.05134.pdf

• Before or after non-linear activation function? Oddly, also open to debate. But, it may be more appropriate after the activation function if
for s-shaped functions like the hyperbolic tangent and logistic function, and before the activation function for activations that result in
non-Gaussian distributions like ReLU.

How could we apply it before of after our activation function if we wanted to? We haven't been peeling our layers apart, but we can micro-
manage more if we want to:

model.add(tf.keras.layers.Conv2D(64, (3, 3), use_bias=False))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation("relu"))

model.add(tf.keras.layers.Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(tf.keras.layers.LeakyReLU(alpha=0.2))
model.add(tf.keras.layers.BatchNormalization(momentum=0.8))

There are also normalizations that work on single samples instead of batches, so better for recurrent networks. In TensorFlow we have
Group Normalization, Instance Normalization and Layer Normalization.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Trying Batch Normalization

....

....
Epoch 15/15
60000/60000 [==============================] - 50s 834us/sample - loss: 0.0027 - accuracy: 0.9993 - val_loss: 0.0385 - val_accuracy: 0.9891

Not So Helpful

Batch Normalization CNN

model.summary()

Layer (type) Output Shape Param #
===
conv2d_2 (Conv2D) (None, 26, 26, 32) 320

batch_normalization (None, 26, 26, 32) 128

conv2d_3 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_1 (None, 12, 12, 64) 0

batch_normalization_1 (None, 12, 12, 64) 256

flatten_1 (Flatten) (None, 9216) 0

dense_2 (Dense) (None, 128) 1179776

batch_normalization_2 (Batch (None, 128) 512

dense_3 (Dense) (None, 10) 1290
===
Total params: 1,200,778
Trainable params: 1,200,330
Non-trainable params: 448

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

CNN with Dropout 99.2

Batch Normalization 98.9

Real Time Demo

This amazing, stunning, beautiful demo from Adam Harley (now just across campus) is very similar to
what we just did, but different enough to be interesting.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

It is worth experiment with. Note that this is an excellent demonstration of how efficient the forward
network is. You are getting very real-time analysis from a lightweight web program. Training it took
some time.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Adding TensorBoard To Your Code

TensorBoard is a very versatile tool that allows us multiple types of insight into our TensorFlow codes. We need only
add a callback into the model to activate the necessary logging.

...

...

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='TB_logDir', histogram_freq=1)

history = model.fit(train_images, train_labels, batch_size=128, epochs=15, verbose=1,
validation_data=(test_images, test_labels), callbacks=[tensorboard_callback])

...

...

TensorBoard runs as a server, because it has useful run-time capabilities, and requires you to start it separately, and to
access it via a browser.

Somewhere else:

tensorboard --logdir=TB_logD

Somewhere else:

Start your Browser and point it at port 6006: http://localhost:6006/

TensorBoard Analysis
The most obvious thing we can do is to look at our training loss. Note that TB is happy to do this in real-time as the
model runs. This can be very useful for you to monitor overfitting.

Our First Model
64 Wide FC Our CNN

TensorBoard Graph Views

And we can drill down.

We can explore the architecture of the deep learning graphs we have constructed.

Our First Model
64 Wide FC

Our CNN Our CNN's
FC Layer

Keras
"Conceptual

Model"
View

of CNN

TensorBoard Parameter Visualization

And we can observe the time evolution of our
weights and biases, or at least their
distributions.

This can be very telling, but requires some
deeper application and architecture dependent
understanding.

Histogram View

Distribution View

TensorBoard Add Ons
TensorBoard has lots of extended capabilities. Two particularly useful and powerful ones are Hyperparameter Search and
Performance Profiling.

Hyperparameter Search

Performance Profiling

Requires some scripting on your part. Look at
https://www.tensorflow.org/tensorboard/hyperparameter_t
uning_with_hparams for a good introduction.

Going beyond basics, like IO time, requires integration of hardware
specific tools. This is well covered if you are using NVIDIA, otherwise
you may have a little experimentation to do. The end result is a user
friendly interface and valuable guidance.

Scaling Up
You may have the idea that deep learning has a voracious appetite for GPU cycles. That is absolutely the case, and the leading edge of research
is currently limited by available resources. Researchers routinely use many GPUs to train a model. Conversely, the largest resources demand
that you use them in a parallel fashion. There are capabilities built into TensorFlow, the MirroredStrategy.

strategy = tf.distribute.MirroredStrategy()
with strategy.scope():

model = tf.keras.Sequential([
tf.keras.layers.Dropout(rate=0.2, input_shape=X.shape[1:]),
tf.keras.layers.Dense(units=64, activation='relu'),
...

])
model.compile(...)

model.fit(...)

MNIST with Horovod!

Horovod: initialize Horovod.
hvd.init()

Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))
...
Horovod: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(12.0 / hvd.size())
...
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
...
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
...
model.compile(loss=keras.losses.categorical_crossentropy,optimizer=opt,metrics=['accuracy'])

callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0),]
if hvd.rank() == 0: callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))

Horovod: fast and easy distributed deep learning in TensorFlow

Alexander Sergeev, Mike Del Balso

You can find a full example of using Horovod with a Keras MNIST code at:
https://horovod.readthedocs.io/en/latest/keras.html

An alternative that has proven itself at extreme scale is Horovod.

https://horovod.readthedocs.io/en/latest/keras.html

Scaling Up Massively

Horovod demonstrates its excellent scalability with a Climate Analytics code that won the Gordon Bell prize in 2018. It
predicts Tropical Cyclones and Atmospheric River events based upon climate models. It shows not only the reach of
deep learning in the sciences, but the scale at which networks can be trained.

Exascale Deep Learning for Climate Analytics

Kurth, et. al.

• 1.13 ExaFlops (mixed precision) peak training performance

• On 4560 6 GPU nodes (27,360 GPUs total)

• High-accuracy (harder when predicting "no hurricane today" is
98% accurate), solved with weighted loss function.

• Layers each have different learning rate

Data Augmentation

As I've mentioned, labeled data is valuable. This type of supervised learning often requires human-labeled data.
Getting more out of our expensive data is very desirable. More datapoints generally equals better accuracy. The
process of generating more training data from our existing pool is called Data Augmentation, and is an extremally
common technique, especially for classification problems.

Our MNIST network has learned to recognize very uniformly formatted characters:

What if we wanted to teach it:

You can see how straightforward and mechanical this is. And yet very effective. You will often see detailed
explanations of the data augmentation techniques employed in any given project.

Note that tf.image makes many of these processes very convenient.

Scale Invariance Rotation Invariance Noise Tolerance Translation Invariance

def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():

for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

def main():
Bunch of parsed training inputs...
....
torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(

datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([

transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

])),
batch_size=args.batch_size, shuffle=True, **kwargs)

test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([

transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):

train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step()

if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")

if __name__ == '__main__':
main()

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:

print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

PyTorch CNN MNIST

Not a fair comparison of terseness as this version has a
lot of extra flexibility.

From:
https://github.com/pytorch/examples/blob/master/mnist/main.py

https://github.com/pytorch/examples/blob/master/mnist/main.py

Exercises
We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away. Of
course everything we have done is standard and you can work on these problems in any reasonable environment.

You may have wondered what else was to be found at tf.keras.datasets. The answer is many interesting problems. The
obvious follow-on is:

Fashion MNIST

These are 60,000 training images, and 10,000 test
images of 10 types of clothing, in 28x28 greyscale.
Sound familiar? A more challenging drop-in for MNIST.

More tf.keras.datasets Fun

Boston Housing Predict housing prices base upon crime, zoning, pollution, etc.

CIFAR10 32x32 color images in 10 classes.

CIFAR100 Like CIFAR10 but with 100 non-overlapping classes.

IMDB 1 sentence positive or negative reviews.

Reuters 46 topics in newswire form.

I have been known to fall asleep during films, but this...

Mann photographs the Alberta Rocky Mountains in a superb fashion...

Its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from

70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental

operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to

three dlrs reuters...

Endless Exercises
Kaggle Challenge
The benchmark driven nature of deep learning
research, and its competitive consequences, have
found a nexus at Kaggle.com. There you can find
over 20,000 datasets:

and competitions:

Including this one:

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2021

The Bigger Picture

Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

• Fully Connected (FC)
• Convolutional (CNN)
• Residual (ResNet) [Feed forward]
• Recurrent (RNN), [Feedback, but has vanishing gradients so...]
• Long Short Term Memory (LSTM)
• Transformer (Attention based)
• Bidirectional RNN
• Restricted Boltzmann Machine
•

•

Several of these are particularly common...

Wikipedia Commons

Residual Neural Nets

• Helps preserve reasonable gradients for very deep networks
• Very effective at imagery
• Used by AlphaGo Zero (40 residual CNN layers) in place of previous

complex dual network
• 100s of layers common, Pushing 1000

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful.
How do we reconcile these two phenomenae? One, very successful, method is to use some feedforward.

Haven't all of our Keras networks been built as strict layers in a sequential method? Indeed, but Keras supports a
functional API that provides the ability to define network that branch in other ways. It is easy and here
(https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat
experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates
the concept beautifully.

Courtesy: Chris Olah

#Example: input 3-channel 256x256 image
x = Input(shape=(256, 256, 3))
y = Conv2D(3, (3, 3))(x)
z = keras.layers.add([x, y])

https://www.tensorflow.org/guide/keras/functional

Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most
effective techniques in deep learning.

Courtesy: Chris Olah

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character
recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true -
text.

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoatnt tihng is taht the frist and lsat ltteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".

LSTMs

Wikipedia CommonsWikipedia Commons

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiter and
Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware. I
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

Wikipedia Commons

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTM takes care of the
details for us (but has a lot of options).

The Keras folks even provide us with an MNIST version (https://keras.io/examples/mnist_hierarchical_rnn/), although I
think it is confusing as we are now killing a fly with a bazooka.

I recommend https://keras.io/examples/conv_lstm/, which uses network is used to predict the next frame of an artificially
generated movie which contains moving squares. A much more natural fit.

https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/

Bi-directional LSTMs

Wikipedia CommonsWikipedia Commons

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

Wikipedia Commons

model = tf.keras.Sequential([
tf.keras.layers.Embedding(encoder.vocab_size, 64),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1)

])

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious:

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the Keras IMDB
movie review sentiment analysis example (https://www.tensorflow.org/tutorials/text/text_classification_rnn).

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you
interested in natural language processing, and related to our running theme of dimensionality reduction. To
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is
represented by a 64 dimensional vector.

Architectures

AlexNet

With these layers, we can build countless different networks (and use TensorFlow to define them). Again, this is "3rd

day" material, but we present them here and you should feel competent to research them yourself.

Wikipedia Commons

GoogLeNet / Inception

Generative Adversarial Network
(GAN)

YOLO (You Only Look Once)

Mask R-CNN

Images from original papers

Autoencoder

Input Layer Hidden Layers Output Layer

Autoencoder

Input Layer Output Layer

Latent Features

Autoencoder

Input Layer Output Layer

Latent Features

This autoencoder concept is very
foundational.

It can be used for powerful generational
networks by controlling the latent space
as in variational autoencoders.

Or it can be a conceptual block in more
complex designs like transformers.

Deepfake Training

Latent Features

Alice

Bob

Deepfake At Work

Latent Features

Alice
Bob

Zao Does DiCaprio
The Chinese app Zao did the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265

https://twitter.com/AllanXia/status/1168049059413643265

Discriminative vs. Generative
Discriminative models classify things, and need only know which side of the hyper-plane the instance lies on.
Generative models need to understand the distribution to generate new instances.

Discriminative Generative

Discriminative models need only capture the conditional probability of digit Y, given image X: P(Y|X). Generative
models must understand the joint probability P(X,Y).

Other Tasks And Their Architectures

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

• Classification (What we did)
• Localization (Where is the digit?)
• Detection (Are there digits? How many?)
• Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some
other building blocks.

We don't have a Day 3, but we do have a good foundation to at least introduce the other important building blocks in
current use.

Learning Approaches

Supervised Learning
How you learned colors.
What we have been doing just now.
Used for: image recognition, tumor identification, segmentation.
Requires labeled data.
Lots of it. Augmenting helps.

Reinforcement Learning
How you learned to walk.
Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
Used for: Go (AlphaGo Zero), robot motion, video games.
Don't just read data, but interact with it!

Unsupervised Learning
(Maybe) how you learned to see.
What we did earlier with clustering and our recommender, and Deepfake.
Find patterns in data, compress data into model, find reducible representation of data.
Used for: Learning from unlabeled data.

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

AI Based Simulation?

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 – Published 12 January 2018

A wise man once (not that long ago) told me "John, I don't
need a neural net to rediscover conservation of energy."

AI Based Simulation Is Here To Stay

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning
Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, Linfeng Zhang

2020 ACM Gordon Bell Prize Winner

“We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab
initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly
optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-
single/half precision.

Try It Yourself

https://github.com/gpuhackathons-
org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_

notebook/CFD/Start_Here.ipynb

NVIDIA's GPU Bootcamp materials contain a great example of this type of work. The premise is to learn a mapping from
boundary conditions to steady state fluid flow. The tutorial works through several different models, starting with a Fully
Connected Network, then using a CNN and finally introducing a more advance Residual Network approach. You should
be able to jump right in with what we have learned here.

https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb

Has Deep Learning left any room for other approaches?

AI
ML

DL
nee Neural Nets

Big

Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL

Does
it
all

lead
to

Deep
Learning?

“Theoretician’s Nightmare” and Other Perspectives

The above is paraphrasing Yann LeCun, the godfather of Deep Learning.

If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better, as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon groundbreaking papers of a few years
ago.

The previously mentioned Christopher Olah has this rather useful summation: "People sometimes complain: 'Neural
networks are so hard to understand! Why can’t we use understandable models, like SVMs?' Well, you understand
SVMs, and you don’t understand visual pattern recognition. If SVMs could solve visual pattern recognition, you would
understand it. Therefore, SVMs are not capable of this, nor is any other model you can really understand."

My own humble observation: Deep Learning looks a lot like late 19th century chemistry. There is a weak theoretical
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more
perspiration than inspiration."

Lazy Scientist's Survey of the Field
Kaggle Challenge
The benchmark driven nature of deep learning
research, and its competitive consequences, have
found a nexus at Kaggle.com. There you can find
over 20,000 datasets:

and competitions:

XGBoost?

Trees
(How much of our earlier learning can we apply here?)

XGBoost is the latest, and most popular, evolution of the Decision Tree approach. Let's say we want to predict is some
given person is likely to be a buyer of a certain car model:

Trees are desirable in that they are non-linear, but still analytically tractable, and can do both regression and classification.

income > 80 income > 50

gender=m

age > 40

0.8 -0.2 0.7 0.3

Y

Y

YY

N

NN

N

0.1 0.2

Gradient Boosted Trees
Er

ro
r

Trees (iterations)

+

+

++

++

Remember This?

XGBoost

A very cool interactive application to
explore these concepts, and try various
hyperparameters, was done by Alex
Rogozhnikov and can be found at:

http://arogozhnikov.github.io/2016/07/05/
gradient_boosting_playground.html

If you want to understand XGBoost in
detail, you can find the original paper at:

https://arxiv.org/pdf/1603.02754.pdf

An in-depth, but still beginner-friendly,
video from StatsQuest can be found at:

https://www.youtube.com/watch?v=GrJP9
FLV3FE

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://arxiv.org/pdf/1603.02754.pdf
https://www.youtube.com/watch?v=GrJP9FLV3FE

XGBoost in Particular
There are various implementations of gradient boosted trees. XGBoost combines several important innovations:

• Parallelizes well both across cores and nodes
• Clever cache optimization
• Works well with missing data

The end result is an efficient algorithm that works well enough with non-optimal hyperparameters the beginners can often
make quick progress.

The scikit-learn version is probably the most popular, but there is a Spark version
(https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j_spark_tutorial.html), and if you want a deeper dive, NDVIDIA
has this pretty nice taxi fare regression model that uses GPUs with Spark and does a hyperparameter search. Note that I
have not tried these myself:

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/

TensorFlow has a boosted tree API along with a nice walkthrough example in the docs:

https://www.tensorflow.org/tutorials/estimator/boosted_trees

However, note that this is not the XGBoost version (yet).

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/
https://www.tensorflow.org/tutorials/estimator/boosted_trees

