5
/\ W
yaihipn: YAl
: 2
..wk\ unﬂm‘

.rqm@\«m‘vr -

Courtesy: Chris Olah

A Groundbreaking Example

These are the 96 first layer 11x11 (x3, RGB, stacked here) filters from AlexNet.

Among the several novel techniques combined in this work (such
as aggressive use of ReLU), they used dual GPUs, with different
flows for each, communicating only at certain layers. A result is
that the bottom GPU consistently specialized on color
information, and the top did not.

Let's Start Small

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential ([
tf.keras.layers.cConv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.mMaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (100, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Early CNN Results

Epoch 10/10
60000/60000 [] - 12s 198us/sample - Toss: 0.0051 - accuracy: 0.9989 - val_loss: 0.0424 - val_accuracy: 0.9874

Primitive CNN
Model accuracy
—— Train model.summary ()
Test Layer (type) output Shape Param #
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
max_pooling2d_1 (None, 13, 13, 32) 0
flatten_1l (Flatten) (None, 5408) 0
dense_38 (Dense) (None, 100) 540900
dense_39 (Dense) (None, 10) 1010
Score Thus Far ns: 542230

params: 542,230

FC (64,64) 97.5 ble params: 0
FC (512,512) 98.2

4 6

Epoch FC (521,512,512) 98.0

CNN (1 Tayer) 98.7

Scaling Up The CNN

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential ([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.cConv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Deeper CNN Results

Epoch 15/15
60000/60000 [] - 34s 566us/sample - Toss: 0.0052 - accuracy: 0.9985 - val_loss: 0.0342 - val_accuracy: 0.9903

Model accuracy Deeper CNN
—— Train
Test model.summary ()
Layer (type) output Shape Param #
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d_3 (None, 12, 12, 64) (0]
flatten_3 (Flatten) (None, 9216) 0
dense 42 (Dense) (None, 128) 1179776
Score Thus Far
)) (None, 10) 1290
FC (64,64) 97.5
,199,882
FC (512,512) 98.2 s: 1,199,882
arams: 0
FC (521,512,512) 98.0
CNN (1 Tayer) 98.7
CNN (2 Layer) 99.0

Overfitting

/

Dropout

Model accuracy

We need some form of regularization to help with the

I overfitting. One seemingly crazy way to do this is the
Ove rflttl ng relatively new technique (introduced by the venerable
Geoffrey Hinton in 2012) of Dropout.

8

Epoch

Some view it as an ensemble method that trains multiple data models simultaneously. One neat perspective
of this analysis-defying technique comes from Jiirgen Schmidhuber, another innovator in the field; under
certain circumstances, it could also be viewed as a form of training set augmentation: effectively, more and
more informative complex features are removed from the training data.

CNN With Dropout

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential ([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.Tlayers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.Tlayers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')

iD))

Parameter is fraction to drop.

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Help From Dropout

Epoch 15/15
60000/60000 [] - 40s 667us/sample - Toss: 0.0187 - accuracy: 0.9935 - val_loss: 0.0301 - val_accuracy: 0.9919

Dropout CNN

Model accuracy

model.summary ()

—— Train)
Test Layer (type) output Shape Param #
conv2d_12 (Conv2D) (None, 26, 26, 32) 320
conv2d_13 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d_7 (None, 12, 12, 64) 0]
dropout_4 (Dropout) (None, 12, 12, 64) 0]
flatten_7 (Flatten) (None, 9216) 0]
Score Thus Far (Dense) (None, 128) 1179776
FC (64,64) 97.5 (Dropout) (None, 128) 0
FC (512,512) 98.2 (Dense) (None, 10) 1290
FC (521,512,512) 98.0 ams: 1,199,882
params: 1,199,882
CNN (1 Tayer) 98.7 Bble params: 0
CNN (2 Layer) 99.0
CNN with Dropout 99.2

Batch Normalization

Another "between layers" layer that is quite popular is Batch Normalization. This technique really helps with vanishing or exploding

gradients. So it is better with deeper networks.

* Maybe not so compatible with Dropout, but the subject of research (and debate).

* Maybe Apply Dropout after all BN layers: https://arxiv.org/pdf/1801.05134.pdf

* Before or after non-linear activation function? Oddly, also open to debate. But, it may be more appropriate after the activation function if
for s-shaped functions like the hyperbolic tangent and logistic function, and before the activation function for activations that result in
non-Gaussian distributions like ReLU.

How could we apply it before of after our activation function if we wanted to? We haven't been peeling our layers apart, but we can micro-
manage more if we want to:

mode]
mode]
mode]

mode]
mode]
mode]

.add (tf.
.add (tf.
.add (tf.

.add (tf.
.add (tf.
.add (tf.

keras
keras
keras

keras
keras
keras

.layers.
.layers.
.layers.

.layers.
.layers.
.layers.

conv2D(64, (3, 3), use_bias=False))
BatchNormalization())
Activation("relu™))

Conv2D(64, kernel_size=3, strides=2, padding="same"))
LeakyReLU(alpha=0.2))
BatchNormalization(momentum=0.8))

There are also normalizations that work on single samples instead of batches, so better for recurrent networks. In TensorFlow we have
Group Normalization, Instance Normalization and Layer Normalization.

Trying Batch Normalization

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential ([
tf.keras.layers.conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer=tf.keras.optimizers.sGD(1r=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Not So Helpful

Epoch 15/15

60000/60000 [] - 50s 834us/sample - Toss: 0.0027 - accuracy: 0.9993 - val_loss: 0.0385 - val_accuracy: 0.9891

Model accuracy

1.00
0.95
0.90
0.85

) 0.80

Batch Normalization CNN

modeT.summary ()

0.75

FC (64,64)
0.70
FC (512,512)

0.65
FC (521,512,512)

6 8 d CNN (1 Tayer)

Epoch

CNN (2 Layer)
CNN with Dropout

Batch Normalization

Score Thus Far

97.

98.

98.

98.

99.

99.

98.

Layer (type) output Shape Param #
conv2d_2 (Conv2D) (None, 26, 26, 32) 320
batch_normalization (None, 26, 26, 32) 128
conv2d_3 (Conv2D) (None, 24, 24, 64) 18496
max_poolina2d 1 (None, 12, 12, 64) 0
ation_1 (None, 12, 12, 64) 256
tten) (None, 9216) 0
) (None, 128) 1179776
ation_2 (Batch (None, 128) 512
) (None, 10) 1290
1,200,778
ms: 1,200,330
params: 448

Real Time Demo

This amazing, stunning, demo from Adam Harley (now just across campus) is very similar to
what we just did, but different enough to be interesting.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

It is worth experiment with. Note that this is an excellent demonstration of how efficient the forward

network is. You are getting very real-time analysis from a lightweight web program. Training it took
some time.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Draw your number here

Downsampled drawing: \2
First guess: | 2
Second guess: | 0

Layer visibility
Input layer

Convolution layer 1
Downsampling layer 1
Convolution layer 2
Downsampling layer 2
Fully-connected layer 1
Fully-connected layer 2

Output layer

Show
Show
Show
Show
Show
Show
Show

Show

7 -

b

W
e

0123456789
-

WEEEE 5E B OB NS ESEECEEC R SN EEE SRR sl

Adding TensorBoard To Your Code

TensorBoard is a very versatile tool that allows us multiple types of insight into our TensorFlow codes. We need only
add a callback into the model to activate the necessary logging.

model.compile(optimizer="adam', Toss='sparse_categorical_crossentropy', metrics=['accuracy'])
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="TB_logDir', histogram_freqg=1)

history = model.fit(train_images, train_labels, batch_size=128, epochs=15, verbose=1,
validation_data=(test_images, test_labels), callbacks=[tensorboard_callback])

TensorBoard runs as a server, because it has useful run-time capabilities, and requires you to start it separately, and to
access it via a browser.

Somewhere else:
tensorboard --logdir=TB_logD

Somewhere else:

Start your Browser and point it at port 6006: http://lTocalhost:6006/

TensorBoard Analysis

The most obvious thing we can do is to look at our training loss. Note that TB is happy to do this in real-time as the
model runs. This can be very useful for you to monitor overfitting.

links

utliers in chart scal

Name Smoothed Value Step Time Relative

. train 0.259 0.259 0 Fri Apr 3,03:30:35 Os

Our FIrSt Model © validation 005134 005134 0 FriApr3,03:3035 Os

64 Wide FC Our CNN

TensorBoard Graph Views

We can explore the architecture of the deep learning graphs we have constructed.

sequential

And we can drill down.

dense_1

dropout_1

Our First Model

64 Wlde FC flatten

dropout

max_poolin

Keras
convad "Conceptual
Model"
View
of CNN

Our CNN Our CNN's
FC Layer

TensorBoard Parameter Visualization

Distribution View

And we can observe the time evolution of our
weights and biases, or at least their
distributions.

This can be very telling, but requires some

deeper application and architecture dependent
understanding.

Histogram View

TensorBoard Add Ons

TensorBoard has lots of extended capabilities. Two particularly useful and powerful ones are Hyperparameter Search and
Performance Profiling.

Performance Profiling

ON DEVICE: TOTAL SELF-TIME (GROUPED BY TYPE) ON DEVICE: TOTAL SELF-TIME

Hyperparameters
num_units
% 16.000

4 32000
Session Group Show
dropout Name. Metrics ~ MUm_units dropout optimizer Accuracy

3df0d7cf35bec5a 32,000 0.20000 sgd = n
Stream #146(MemcpyH2D,Memcp
Stream #147(MemcpyH2D)
r 53bfSbeced190fa 16.000 0.20000 adam 0 Stream #148(MemcpyD2H)
Stream #149(MemcpyD2D,Memep
optimizer 97! b 16.000 010000 adam 0 Stream #165(Compute)

3ec2aed9e075891. 32.000 0.20000 adam

adam Steps
A4 sod 6826c7fa3322d82 32.000 0.10000 adam 0 v TensorFlow Name Scope

Metrics 6844 0 16.000 0.20000 sgd
Accuracy 7b29a737e3daca 32.000 0.10000 sgd

! ae235909ecdedd 0.10000 sgd 0.77700 w

Status

Unknown 8 Success

4 Failure ® Runnina

Sorting TensorFlow Ops
v IhostCPU (pid 49
v main/253344

tf_GPU_Event_Manager/253990
tf_GPU_Event_Manager/253993
f_GPU_Event_Manager/253995
tf_GPU_Event_Manager/253997
tf_GPU_Event_Manager/25399
tf_GPU_Event_Manager/254001

Paging

Hyperparameter Search e

tf_GPU_Event_Manager/254005
v tf_Compute/254007

Requires some scripting on your part. Look at

https://www.tensorflow.org/tensorboard/hyperparameter_t Going beyond basics, like 10 time, requires integration of hardware

uning_with_hparams for a good introduction. specific tools. This is well covered if you are using NVIDIA, otherwise
you may have a little experimentation to do. The end result is a user
friendly interface and valuable guidance.

Scaling Up

You may have the idea that deep learning has a voracious appetite for GPU cycles. That is absolutely the case, and the leading edge of research
is currently limited by available resources. Researchers routinely use many GPUs to train a model. Conversely, the largest resources demand
that you use them in a parallel fashion. There are capabilities built into TensorFlow, the MirroredStrategy.

strategy = tf.distribute.Mirroredstrategy()
with strategy.scope():
model = tf.keras.Sequential([
tf.keras.layers.Dropout(rate=0.2, input_shape=X.shape[1l:]),
tf.keras.layers.Dense(units=64, activation='relu'),

Training Process.

D
model.compile(...) .m.w.
model.fit(...)

Data Store Training Process
| | | 5 =
An alternative that has proven itself at extreme scale is Horovod.
MNIST with Horovod!

Horovod: initialize Horovod. Gradients

hvd.initQ

1. Read Data 2. CDmpL’lte Model 3. Average- Gradients 4. Upd;{e Model
Horovod: pin GPU to be used to process local rank (one GPU per process) Updates (Gradients)

config = tf.configProto()
config.gpu_options.allow_growth = True

config.gpu_options.visible_device_list = str(hvd.local_rank()) Horovod: fast and easy distributed deep learning in TensorFlow

K.set_session(tf.session(config=config)) Alexander Sergeev, Mike Del Balso
Horovod: adjust number of epochs based on number of GPUs.

epochs = int(math.ceil(12.0 / hvd.size()) You can find a full example of using Horovod with a Keras MNIST code at

s X i https://horovod. readthedocs.io/en/latest/keras.html
Horovod: adjust learning rate based on number of GPUs.

opt = keras.optimizers.Adadelta(1.0 * hvd.size())

Horovod: add Horovod Distributed Optimizer.
opt = hvd.Distributedoptimizer(opt)

model.compile(loss=keras.losses.categorical_crossentropy,optimizer=opt,metrics=["'accuracy'])

callbacks = [hvd.callbacks.BroadcastGlobalvariablescallback(0),]
if hvd.rank() == 0: callbacks.append(keras.callbacks.ModelcCheckpoint('./checkpoint-{epoch}.h5"))

https://horovod.readthedocs.io/en/latest/keras.html

Scaling Up Massively

Horovod demonstrates its excellent scalability with a Climate Analytics code that won the Gordon Bell prize in 2018. It
predicts Tropical Cyclones and Atmospheric River events based upon climate models. It shows not only the reach of
deep learning in the sciences, but the scale at which networks can be trained.

1.13 ExaFlops (mixed precision) peak training performance
* 0n 45606 GPU nodes (27,360 GPUs total)

* High-accuracy (harder when predicting "no hurricane today" is
98% accurate), solved with weighted loss function.

* Layers each have different learning rate

Exascale Deep Learning for Climate Analytics
Kurth, et. al.

Data Augmentation

As I've mentioned, labeled data is valuable. This type of supervised learning often requires human-labeled data.
Getting more out of our expensive data is very desirable. More datapoints generally equals better accuracy. The

process of generating more training data from our existing pool is called Data Augmentation, and is an extremally
common technique, especially for classification problems.

Our MNIST network has learned to recognize very uniformly formatted characters: .E E

What if we wanted to teach it:

5 b

Scale Invariance Rotation Invariance Noise Tolerance Translation Invariance

FREE?

You can see how straightforward and mechanical this is. And yet very effective. You will often see detailed
explanations of the data augmentation techniques employed in any given project.

Note that tf.image makes many of these processes very convenient.

from __future__ import print_function

import argparse

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

class Net(nn.Module):
def _init__(self):

super(Net, self).__init_Q
self.convl = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropoutl = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fcl = nn.Linear(9216, 128)
self.fc2 nn.Linear (128, 10)

def forward(self, x):
self.convl(x)
F.relu(x)
self.conv2(x)
F.relu(x)
F.max_pool2d(x, 2)
self.dropoutl(x)
torch.flatten(x, 1)
self.fcl(x)
F.reTu(x)
self.dropout2(x)

= self.fc2(x)

output = F.log_softmax(x, dim=1)
return output

X X X X X X X X X X

x

def train(args, model, device, train_loader, optimizer, epoch):
model.trainQ)
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad(Q)
output = model(data)
loss = F.nl1_Toss(output, target)
loss.backward()
optimizer.step(Q)
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

det test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad(Q):
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)

test_loss += F.nl1_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

PyTorch CNN MNIST

Not a fair comparison of terseness as this version has a
lot of extra flexibility.

From:
https://github.com/pytorch/examples/blob/master/mnist/main.py

h'.format(

bose ([

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), Ir=args.1r)

scheduler = StepLR(optimizer, step_size=1l, gamma=args.gamma)
for epoch in range(l, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step(Q)

if args.save_model:

torch.save(model.state_dict(), "mnist_cnn.pt")

if _name__ == '_main_":
main()

https://github.com/pytorch/examples/blob/master/mnist/main.py

Exercises

We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away. Of
course everything we have done is standard and you can work on these problems in any reasonable environment.

You may have wondered what else was to be found at tf.keras.datasets. The answer is many interesting problems. The
obvious follow-on is:

Fashion MINIST

i DD B B—-——u=l
b IR B e W T e 5

- DDl @R).

These are 60,000 training images, and 10,000 test
images of 10 types of clothing, in 28x28 greyscale.
Sound familiar? A more challenging drop-in for MNIST.

|
a
;

More tf.keras.datasets Fun

per capita crime rate by town

proportion of residential land

proportion of non-retail busing

Charles River dummy variable (

nitric oxides concentration (p3

average number of rooms per dwg

H H H H H - H / roportion of owner-occupied u

Boston Housing Predict housing prices base upon crime, zoning, pollution, etc. Feivhied dictances to five Bost

index of accessibility to radif

full-value property-tax rate p4
pupil-teacher ra
1eee(Bk - ©.63)"

% lower status of the populatig

Median value of owner-occupied

horse

CIFAR10 32x32 color images in 10 classes.

lawn_mower

CIFAR100 Like CIFAR10 but with 100 non-overlapping classes.

. . . I have been known to fall asleep during films, but this...
IMDB 1 sentence pOSItIVE or negatwe reviews. Mann photographs the Alberta Rocky Mountains in a superb fashion...

This is the kind of film for a snowy Sunday afternoon...

Reuters 46 topics in newswire form.

Its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from
70 cts in 1986 the company said pretax net should rise to nine to 10 min dlrs from six min dlrs in 1986 and rental

operation revenues to 19 to 22 min dlrs from 12 5 min dirs it said cash flow per share this year should be 2 50 to
three dlrs reuters...

Endless Exercises

Kaggle Challenge

The benchmark driven nature of deep learning and competitions:
research, and its competitive consequences, have Severstal: Steel Defect Detection
found a nexus at Kaggle.com. There you can find Bl e Campenton -2
over 20,000 datasets:

Two Sigma: Using News to Predict Stock Movements
Use news analytics to predict stock price performance

. Waves Measuring Buoys Data !
ﬂ o APTOS 2019 Blindness Detection

p blindne
g Shared Cars Locatiol
NYS Environmental Remediation Sites

2@ UW Madison Course SIIM-ACR Pneumothorax

Segmentation

he:)
Google-Landmarks Dataset

S Venues in Bournemo

- NEPIET CAUPIANIEL DEArGll nEsSUIts

Search Engine Results - Fli¢ . Predicting Molecular Properties

Women's Shoe Price:

8N Ramen Ratings
q' Crimes in Boston %

Peace Agreements D
, Goodreads-books L US Public Assistance for Women and Childrer

o]
Ghana Health Faciliti Digit Recognizer

Chennai Water Manageme
hennel Witer Menageme Chess Game Dataset (Lichess) Learmn iter v

shrink-wrappes
Vega shrink-wrappet Electric Motor Temperatura

]
d Los Angeles Parking Citations

Gas Prices in Brazil

P US Traffic Fatality Records
B

bl
-

[S

The Bigger Picture

John Urbanic

Parallel Computing Scientist
Pittsburgh Supercomputing Center

Copyright 2021

Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

* Fully Connected (FC)

e Convolutional (CNN)

* Residual (ResNet) [Feed forward]

* Recurrent (RNN), [Feedback, but has vanishing gradients so...]
* Long Short Term Memory (LSTM)

* Transformer (Attention based)

* Bidirectional RNN
* Restricted Boltzmann Machine

Several of these are particularly common...

Residual Neural Nets

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful.
How do we reconcile these two phenomenae? One, very successful, method is to use some feedforward.

Helps preserve reasonable gradients for very deep networks

* Very effective at imagery

* Used by AlphaGo Zero (40 residual CNN layers) in place of previous
complex dual network

« 100s of layers common, Pushing 1000 #Example: input 3-channel 256x256 image
X Input(shape=(256, 256, 3))

y conv2D(3, (3, 3))X

z keras.layers.add([x, yl])

Haven't all of our Keras networks been built as strict layers in a sequential method? Indeed, but Keras supports a
functional APl that provides the ability to define network that branch in other ways. It is easy and here
(https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat

experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates
the concept beautifully.

https://www.tensorflow.org/guide/keras/functional

Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most
effective techniques in deep learning.

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character

recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true -
text.

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny
iprmoatnt tihng is taht the frist and Isat Itteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".

The dog chased the cat up the tree.

MW

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiter and

Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware. |
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTM takes care of the
details for us (but has a /ot of options).

The Keras folks even provide us with an MNIST version (https://keras.io/examples/mnist hierarchical rnn/), although |
think it is confusing as we are now killing a fly with a bazooka.

| recommend https://keras.io/examples/conv Istm/, which uses network is used to predict the next frame of an artificially
generated movie which contains moving squares. A much more natural fit.

https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/

Bi-directional LSTMs

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

The dog chased the cay

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious: The dog chased the ca(up the tree.

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the Keras IMDB
movie review sentiment analysis example (https://www.tensorflow.org/tutorials/text/text_classification_rnn).

mode’
tf

tf.
tf.
tf.
tf.
tf.

D

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you
interested in natural language processing, and related to our running theme of dimensionality reduction. To
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is
represented by a 64 dimensional vector.

= tf.keras.Sequential ([
.layers.
layers.
layers.
.layers.
Tayers.
Tayers.

.keras

keras

keras.
keras.

keras.
keras.

Embedding(encoder.vocab_size, 64),

Bidirectional (tf.keras.layers.LSTM(64, return_sequences=True)),
Bidirectional (tf.keras.layers.LSTM(32)),

Dense(64, activation='relu'),

Dropout(0.5),

Dense (1)

Architectures

With these layers, we can build countless different networks (and use TensorFlow to define them). Again, this is "3
day" material, but we present them here and you should feel competent to research them yourself.

Generative Adversarial Network YOLO (You Only Look Once)

~ i) 3
] o1
4 Mihe-table-00 R0
Generator Network) - hair.86. '
— = Bbttle.
‘ : b

.S, B e xgs.s1.o¢.
'R |

.
chair.99¢

1ask1.00 Chair.99

x
3%

Mazpool Layer Maxpool Layer

222 225

bowl.81

Faster R-CNN ' Faster R-CNN
knife.83 w/ ResNet [19] w/ FPN [27]

wvonvomuuon
Pooling

GoogleNet / Inception Other

Mask R-CNN

Autoencoder

Input Layer Hidden Layers Output Layer

Autoencoder

Input Layer

\

Latent Features

Output Layer

L

Autoencoder

Input L Dutput Layer

This autoencoder concept is very
foundational.

It can be used for powerful generational
networks by controlling the latent space
as in variational autoencoders.

Or it can be a conceptual block in more
complex designs like transformers.

Deepfake Training

Latent Features

Deepfake At Work

Latent Features

/ao Does DiCaprio

The Chinese app Zao did the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265

https://twitter.com/AllanXia/status/1168049059413643265

Discriminative vs. Generative

Discriminative models classify things, and need only know which side of the hyper-plane the instance lies on.
Generative models need to understand the distribution to generate new instances.

Discriminative Generative

Discriminative models need only capture the conditional probability of digit Y, given image X: P(Y|X). Generative
models must understand the joint probability P(X,Y).

Other Tasks And Their Architectures

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

* Classification (What we did)

* Localization (Where is the digit?)

* Detection (Are there digits? How many?)
* Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some
other building blocks.

We don't have a Day 3, but we do have a good foundation to at least introduce the other important building blocks in
current use.

Learning Approaches

Supervised Learning
How you learned colors.
What we have been doing just now.
Used for: image recognition, tumor identification, segmentation.
Requires labeled data.
Lots of it. Augmenting helps.

Reinforcement Learning
How you learned to walk.
Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
Used for: Go (AlphaGo Zero), robot motion, video games.
Don't just read data, but interact with it!

Unsupervised Learning
(Maybe) how you learned to see.
What we did earlier with clustering and our recommender, and Deepfake.
Find patterns in data, compress data into model, find reducible representation of data.
Used for: Learning from unlabeled data.

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

Al Based Simulation?

A wise man once (not that long ago) told me "John, | don't
need a neural net to rediscover conservation of energy."

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 — Published 12 January 2018

Training Computers to Tame Chaos

g algo

d CNaotl

O Chaos Model
Researchers started with the evolving solution to the Kuramoto-Sivashinsky

equation, which models propagating flames

e —————
=

® Machine Learning
After training itself on data from the past evolution of the Kuramoto- Sivashinsky

system, the “reservoir computing” algorithm predicts its future evolution:

O-0 Do They Match?
Subtracting B from A shows that the algorithm accurately predicts the model

out to an impressive 8 Lyapunov times, before chaos ultimately prevails:

Time (in unit

Al Based Simulation Is Here To Stay

“We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab
initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly
optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-

single/half precision.

4

Training data
by DP-GEN

1 ab initio potentia

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, Linfeng Zhang
2020 ACM Gordon Bell Prize Winner

Try It Yourself

NVIDIA's GPU Bootcamp materials contain a great example of this type of work. The premise is to learn a mapping from
boundary conditions to steady state fluid flow. The tutorial works through several different models, starting with a Fully
Connected Network, then using a CNN and finally introducing a more advance Residual Network approach. You should
be able to jump right in with what we have learned here.

Input data X

Simulated flow lines Y

https://github.com/gpuhackathons-
org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc ai/ai science cfd/English/python/jupyter

notebook/CFD/Start Here.ipynb

https://github.com/gpuhackathons-org/gpubootcamp/blob/78e9fee3432b60348489682a978fa63f29f7e839/hpc_ai/ai_science_cfd/English/python/jupyter_notebook/CFD/Start_Here.ipynb

Has Deep Learning left any room for other approaches?

Character Recognition
Capchas

Chess
Go

P(c)
Does e
P(c,d) = P(c)*P(flc)

i t P(c,d)
all

lead

to
Deep

Learning? Machine
Learning

As the Data Scientist wanders across the ill-defined boundary between Data Science and Machine Learning,
in search of the fabled land of Artificial Intelligence, they find that the language changes from programming
to a creole of linear algebra and probablity and statistics.

“Theoretician’s Nightmare” and Other Perspectives

The above is paraphrasing Yann LeCun, the godfather of Deep Learning.
If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better, as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon groundbreaking papers of a few years
ago.

The previously mentioned Christopher Olah has this rather useful summation: "People sometimes complain: 'Neural
networks are so hard to understand! Why can’t we use understandable models, like SVMs?' Well, you understand
SVMs, and you don’t understand visual pattern recognition. If SVMs could solve visual pattern recognition, you would
understand it. Therefore, SVMs are not capable of this, nor is any other model you can really understand."

My own humble observation: Deep Learning looks a lot like late 19t century chemistry. There is a weak theoretical
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more
perspiration than inspiration."

Lazy Scientist's Survey of the Field

Kaggle Challenge

The benchmark driven nature of deep learning and competitions:
research, and its competitive consequences, have n
found a nexus at Kaggle.com. There you can find
over 20,000 datasets:

$120,000
299 te:

Severstal: Steel Defect Detection

[I Waves Measuring Buoys Data
g Shared Cars Locatiol

'a UW Madison Course

NYS Environmental Remediatic

Google-Landmarks Dataset

] Venues in Bournemo

Women's Shoe Price:

bd
| —

R Peace Agreements D

Digit Recognizer

Chess Game Dataset (Lichess)

Los Angeles Parking Citations

US Traffic Fatality Records

Trees

(How much of our earlier learning can we apply here?)

XGBoost is the latest, and most popular, evolution of the Decision Tree approach. Let's say we want to predict is some
given person is likely to be a buyer of a certain car model:

age > 40
gender=m

income > 80 income > 50

0.1 0.2

0.8 -0.2 0.7 0.3

Trees are desirable in that they are non-linear, but still analytically tractable, and can do both regression and classification.

Error

Gradient Boosted Trees

-~
S
~

Trees (iterations)

Remember This?

Dataset to classify:

Prediction: Decision functions of first 30 trees

predictions of GB (all 50 trees)

test loss: 0.430

tree depth: 5 learning rate: 0.1 rotate dataset:

anssl) <@ O

subsample: 100% # trees: 50

aassss——f) []

[rotate trees
show gradients on hover
] use Newton-Raphson update

A very cool interactive application to
explore these concepts, and try various
hyperparameters, was done by Alex
Rogozhnikov and can be found at:

://arogozhnikov.gi
gradient boosting playground.html

If you want to understand XGBoost in
detail, you can find the original paper at:

https://arxiv.org/pdf/1603.02754.pdf

An in-depth, but still beginner-friendly,
video from StatsQuest can be found at:

://www.youtube.com/watch?v=GrJP9
FLV3FE

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://arxiv.org/pdf/1603.02754.pdf
https://www.youtube.com/watch?v=GrJP9FLV3FE

XGBoost in Particular

There are various implementations of gradient boosted trees. XGBoost combines several important innovations:

* Parallelizes well both across cores and nodes
* Clever cache optimization
* Works well with missing data

The end result is an efficient algorithm that works well enough with non-optimal hyperparameters the beginners can often
make quick progress.

The scikit-learn version is probably the most popular, but there is a Spark version
(https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j spark_tutorial.html), and if you want a deeper dive, NDVIDIA

has this pretty nice taxi fare regression model that uses GPUs with Spark and does a hyperparameter search. Note that |
have not tried these myself:

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/

TensorFlow has a boosted tree APl along with a nice walkthrough example in the docs:

https://www.tensorflow.org/tutorials/estimator/boosted trees

However, note that this is not the XGBoost version (yet).

https://developer.nvidia.com/blog/accelerating-spark-3-0-and-xgboost-end-to-end-training-and-hyperparameter-tuning/
https://www.tensorflow.org/tutorials/estimator/boosted_trees

