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Who am I?

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

&

CMU Physics

I am here to work with you on anything high 

performance computing related. Which includes 

many things - like this.

7311 Wean Hall and via urbanic@psc.edu

any time. And I look forward to resuming office 

hours.

NSF Monthly Workshop Series

September 3-4 HPC Monthly Workshop: MPI

October 1-2 HPC Monthly Workshop: Big Data

November 5 HPC Monthly Workshop: OpenMP

December 3-4 HPC Monthly Workshop: Big Data

January 21 HPC Monthly Workshop: OpenMP

February 19-20 HPC Monthly Workshop: Big Data

March 3 HPC Monthly Workshop: OpenACC

April 7-8 HPC Monthly Workshop: Big Data

May 5-6 HPC Monthly Workshop: MPI

June 2-5 Summer Boot Camp

August 10-11 HPC Monthly Workshop: Big Data

September 14-15 HPC Monthly Workshop: MPI

October 5-6 HPC Monthly Workshop: Big Data

November 3 HPC Monthly Workshop: OpenMP

December 7-8 HPC Monthly Workshop: Big Data

mailto:urbanic@psc.edu


Logistics

Schedule

1:00 Start

3:00 20 Minute Break

5:00 Finish

Materials
http://psc.edu/dl-for-physicists

Questions

• I hope you have lots.

• Let's start with chat and hands-up for mic.

• We have a producer to help manage.

Hands-On

When we get there, but mostly after.
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http://psc.edu/dl-for-physicists


Deep Learning?

AI
ML

DL
nee Neural Nets

Big

Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL



No. This is a new spin, where we are going to assume you can be 
comfortable with higher dimensional vector spaces. Most machine 
learning students creep slowly towards this perspective via linear 
algebra and statistical techniques. But we physicists think in spaces 
and manifolds already. This is a tremendous advantage, and we will 
make use of it.

For Physicists?
Is this all about physics applications?



Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images



Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional

Manifold
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Dimensionality Reduction

You will find a recurring theme throughout machine learning, not just deep learning:

• Our data naturally resides in higher dimensions

• Reducing the dimensionality makes the problem more tractable

• And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed 
representation.



Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

And in much higher dimensional spaces we run into the Curse of Dimensionality.

Sometimes you know how many clusters you have to start with. Often you don’t. 
How hard can it be to count clusters? How many are here?



Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will 
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of 
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances 
between randomly distributed points within differently 
dimensioned unit hypercubes. Notice how all the points start 
to be about the same distance apart.

Once can imagine this makes life harder on a clustering 
algorithm!

There are other surprising effects: random vectors are 
almost all orthogonal; the unit sphere takes almost no 
volume in the unit square. These cause all kinds of problems 
when generalizing algorithms from our lowly 3D world.



Metrics

Even the definition of distance  (the metric) can vary based upon application. If you are solving chess problems, you might find the 
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b ≥ c ).



Alternative DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!



Alternative DR: Principal Component Analysis

Flatter 2D-ish Data Set View down the 1st Princ. Comp.



import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
plt.figure()
plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
plt.xticks([]); plt.yticks([])
plt.title(title)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.) )

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA (Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)
draw(X_tsne, "t-SNE Embedding")

plt.show()

Testing These Ideas With Scikit-learn



The
Journey
Ahead



Deep Learning / Neural Nets
Without question the biggest thing in ML and computer science right now. Is the hype 
real? Can you learn anything meaningful in an afternoon? How did we get to this point?

The ideas have been around for decades. Two components came together in the past 
decade to enable astounding progress:

• Widespread parallel computing (GPUs)

• Big data training sets



Two Perspectives
There are really two common ways to view the fundaments of deep learning.

• Inspired by biological models.

• An evolution of classic ML techniques (the perceptron).

They are both fair and useful. We’ll give each a thin slice of our attention before we move on 
to the actual implementation. You can decide which perspective works for you.



Modeled After The Brain



As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer

Linear

Network

Hidden Layers

Nonlinear

Courtesy: Chris Olah



Basic NN Architecture

Input Layer Hidden Layer Output Layer

Synapse

Neuron



In Practice

How many 

inputs?

How deep?

How many 

outputs?

For an image it 

could be one 

(or 3) per pixel.

Might be an 

entire image.

100+ layers

have become

common.

Or could be

discreet set of

classification

possibilities.

Woman

House

Airplane

Cat



Inference
The "forward" or thinking step

0.5

0.9

-0.3

H1

H2

H3

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)



Activation Function
Neurons apply activation functions at these summed inputs. Activation functions 

are typically non-linear.

• The Sigmoid function produces a value between 0 and 1, so it is intuitive 

when a probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and 

is equal to the input when the input is positive. Rectified Linear activation 

functions are currently the most popular activation function as they are more 

efficient than the sigmoid or hyperbolic tangent.

• Sparse activation: In a randomly initialized network, only 50% of 

hidden units are active.

• Better gradient propagation: Fewer vanishing gradient problems 

compared to sigmoidal activation functions that saturate in both 

directions.

• Efficient computation: Only comparison, addition and multiplication.

• There are Leaky and Noisy variants.
-4    -3    -2    -1    0     1     2     3     4   
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Inference

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13

H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96

H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40



Inference

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35

O1 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85



As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = Sig(*Sig( ) = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.



Biases

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.8 3.2 -0.3) = Sig(*Sig( ) = .14 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

It is also very useful to be able to offset our inputs by some constant. You can think of this as 
centering the activation function, or translating the solution (next slide). We will call this 
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with bias=0.1:

+

0.1

0.1

0.1

Bias



Linear + Nonlinear
The magic formula for a neural net is that, at each layer, we apply linear operations (which 
look naturally like linear algebra matrix operations) and then pipe the final result through 
some kind of final nonlinear activation function. The combination of the two allows us to do 
very general transforms.

The matrix multiply provides the skew, 
rotation and scale.

The bias provides the translation.

The activation function provides the 
warp.



Linear + Nonlinear
These are two very simple networks untangling spirals. Note that the second does not 
succeed. With more substantial networks these would both be trivial.

Courtesy: Chris Olah



Width of Network
A very underappreciated fact about networks is that the width of any layer determines how 
many dimensions it can work in. This is valuable even for lower dimension problems. How 
about trying to classify (separate) this dataset:

Can a neural net do this with twisting and deforming? What good does it do to have more 
than two dimensions with a 2D dataset?

Courtesy: Chris Olah



Working In Higher Dimensions
It takes at least 3 units wide to pull this off, regardless of depth.

Greater depth allows us to stack these operations, and can be very effective. The gains from 
depth are harder to characterize.

Trying Success Success in 3D

Courtesy: Chris Olah



Theoretically

Universal Approximation Theorem: A 1-hidden-layer feedforward network of this type can 
approximate any function1, given enough width2.

Not really that useful as:

• Width could be enormous.

• Doesn't tell us how to find the correct weights.

1) Borel measurable. Basically, mostly continuous and bounded.
2) Could be exponential number of hidden units, with one unit required for each distinguishable input configuration.



Training Neural Networks

So how do we find these magic weights? We want to minimize the error on our training data. 
Given labeled inputs, select weights that generate the smallest average error on the outputs.

We know that the output is a function of the weights: E(w1,w2,w3,...i1,...t1,...). So to figure out 
which way, and how much, to push any particular weight, say w3, we want to calculate 𝜕𝐸

𝜕𝑤3

There are a lot of dependencies going on  here. It isn't obvious 
that there is a viable way to do this in very large networks.

0.5

0.9

-

0.3

.13

.96

.40

.35

.85

0.9

I

T

Ground

Truth

For Sigmoid

w O

If we take one small piece, it doesn't look so bad.

Note that the role of the gradient,        , here means
that it becomes a problem if it vanishes. This is an 
issue for very deep networks.

𝜕𝐸

𝜕𝑤3



Backpropagation

If we use the chain rule repeatedly across layers we can work our way backwards from the 
output error through the weights, adjusting them as we go. Note that this is where the 
requirement that activation functions must have nicely behaved derivatives comes from.

This technique makes the weight inter-dependencies much more tractable. An elegant 
perspective on this can be found from Chris Olah at

http://colah.github.io/posts/2015-08-Backprop .

With basic calculus you can readily work through the details. You can find an excellent 
explanation from the renowned 3Blue1Brown at

https://www.youtube.com/watch?v=Ilg3gGewQ5U .

You don't need to know the details, and this is all we have time to say, but you certainly can 
understand this fully if your freshman calculus isn't too rusty and you have some spare time.

http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U


Solvers
However, even this efficient process leaves us with potentially many millions of simultaneous equations to solve (real 
nets have a lot of weights). They are non-linear to boot. Fortunately, this isn't a new problem created by deep learning, 
so we have options from the world of numerical methods.

The standard has been gradient descent. Methods, often 
similar, have arisen that perform better for deep learning 
applications. TensorFlow will allow us to use these 
interchangeably - and we will.

Most interesting recent methods incorporate momentum to 
help get over a local minimum. Momentum and step size are 
the two hyperparameters we will encounter later.

Nevertheless, we don't expect to ever find the actual global 
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually 
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and 
then repeating with another mini-batch.

Wikipedia Commons



Going To Play Along?

Make sure you are on a GPU node:

bridges2-login014% interact -gpu
v001%

Load the TensorFlow 2 Container:

v001% singularity shell --nv /ocean/containers/ngc/tensorflow/tensorflow_21.02-tf2-py3.sif 

And start TensorFlow:

Singularity> python
Python 3.8.5 (default, Jul 28 2020, 12:59:40) 
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
>>> ...some congratulatory noise...
>>>

Two Other Ways To Play Along

From inside the container, and in the right example directory,run the python 
programs from the command line:

Singularity> python CNN_Dropout.py

or invoke them from within the python shell:

>>> exec(open("./CNN_Dropout.py").read())



The API is well 
documented.

That is terribly 
unusual.

Take advantage and
keep a browser open 

as you develop.

Documentation



MNIST
We now know enough to attempt a problem. Only because the TensorFlow framework, and 
the Keras API, fills in a lot of the details that we have glossed over. That is one of its functions.

Our problem will be character recognition. We will learn to read handwritten digits by training 
on a large set of 28x28 greyscale samples.

First we’ll do this with the simplest possible model just to show how the TensorFlow 
framework functions. Then we will gradually implement our way to a quite sophisticated and 
accurate convolutional neural network for this same problem.



import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Getting Into MNIST

matplotlib bonus insight

import matplotlib.pyplot as plt

plt.imshow(train_images[2], cmap=plt.get_cmap('gray'), 
interpolation='none')
plt.title("Digit: {}".format(train_labels[2]))

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255



import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Defining Our Network

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Starting from zero?

In general, initialization values are 
hard to pin down analytically. 
Values might help optimization but 
hurt generalization, or vice versa.

The only certainty is you need to 
have different values to break the 
symmetry, or else units in the 
same layer, with the same inputs, 
would track each other.

Practically, we just pick some 
"reasonable" values.

model.summary()
_____________________________________________
Layer (type)        Output Shape      Param #   
=============================================
dense_6 (Dense)     (None, 64)          50240     
_____________________________________________
dense_7 (Dense)     (None, 64)           4160      
_____________________________________________
dense_8 (Dense)     (None, 10)            650       
=============================================
Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0



Cross Entropy Loss & Softmax

Why Softmax?

The values coming out of our matrix operations can have large, and negative 
values. We would like our solution vector to be conventional probabilities that 
sum to 1.0. An effective way to normalize our outputs is to use the popular 
Softmax function. Let's look at an example with just three possible digits:

Digit Output Exponential Normalized

0 4.8 121 .87
1 -2.6 0.07 .00
2 2.9 18 .13

Given the sensible way we have constructed these outputs, the Cross Entropy Loss 
function is a good way to define the error across all possibilities. Better than 
squared error, which we have been using until now. It is defined as - y_ log y, 
or if this really is a 0, y_=(1,0,0), and

-1log(0.87) - 0log(0.0001) - 0log(0.13) = -log(0.87) = -0.13

You can think that it "undoes" the Softmax, if you want.



import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Training

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

history = model.fit(train_images, train_labels, batch_size=128, epochs=40, verbose=1, validation_data=(test_images, test_labels))



Train on 60000 samples, validate on 10000 samples
Epoch 1/40
60000/60000 [==============================] - 1s 16us/sample - loss: 0.3971 - accuracy: 0.8889 - val_loss: 0.2003 - val_accuracy: 0.9386
Epoch 2/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.1696 - accuracy: 0.9503 - val_loss: 0.1430 - val_accuracy: 0.9562
Epoch 3/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.1224 - accuracy: 0.9631 - val_loss: 0.1218 - val_accuracy: 0.9614
Epoch 4/40
60000/60000 [==============================] - 1s 9us/sample - loss: 0.0972 - accuracy: 0.9715 - val_loss: 0.1109 - val_accuracy: 0.9657
Epoch 5/40
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0813 - accuracy: 0.9758 - val_loss: 0.0986 - val_accuracy: 0.9700
Epoch 6/40
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0683 - accuracy: 0.9796 - val_loss: 0.1035 - val_accuracy: 0.9683
....
....
Epoch 38/40
60000/60000 [==============================] - 1s 12us/sample - loss: 0.0064 - accuracy: 0.9978 - val_loss: 0.1632 - val_accuracy: 0.9699
Epoch 39/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.0027 - accuracy: 0.9993 - val_loss: 0.1384 - val_accuracy: 0.9750
Epoch 40/40
60000/60000 [==============================] - 1s 9us/sample - loss: 6.8242e-04 - accuracy: 0.9999 - val_loss: 0.1390 - val_accuracy: 0.9755

matplotlib bonus insight

history = model.fit(train_images, ..., ...)

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

Results



import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Let's Go Wider



....

....
Epoch 30/30
60000/60000 [==============================] - 2s 32us/sample - loss: 0.0083 - accuracy: 0.9977 - val_loss: 0.1027 - val_accuracy: 0.9821

Wider Results

Wider

model.summary()

_____________________________________________
Layer (type)         Output Shape     Param #   
=============================================
dense_18 (Dense)     (None, 512)       401920    
_____________________________________________
dense_19 (Dense)     (None, 512)       262656    
_____________________________________________
dense_20 (Dense)     (None, 10)          5130      
=============================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

55,050 for 64 Wide Model



import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Maybe Deeper?



....

....
60000/60000 [==============================] - 3s 45us/sample - loss: 0.0119 - accuracy: 0.9967 - val_loss: 0.1183 - val_accuracy: 0.9800

Wide And Deep Results

Deep and Wide

model.summary()
_____________________________________________
Layer (type)       Output Shape       Param #   
=============================================
dense_24 (Dense)    (None, 512)        401920    
_____________________________________________
dense_25 (Dense)    (None, 512)        262656    
_____________________________________________
dense_26 (Dense)    (None, 512)        262656    
_____________________________________________
dense_27 (Dense)     (None, 10)          5130      
=============================================
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

Recap

FC 64,64 97.5

FC 512,512 98.2

FC 521,512,512 98.0



Image Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

AlexNet won the 2012 ImageNet LSVRC and changed the DL world.

CONV 11x11/ReLU

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU

CONV 3x3ReLU

CONV 3x3/ReLU

MAX POOLING

FULL 4096/ReLU

4M

16M

37M

442K

1.3M

884K

307K

35K

Image Recognition Done Right: CNNs



Convolution



Convolution
Boundary and Index Accounting



Straight  Convolution

+          =

Edge Detector

Images: Wikipedia



Simplest Convolution Net

Courtesy: Chris Olah



Stacking Convolutions

Courtesy: Chris Olah
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From the very nice 
Stanford CS231n  

course at
http://cs231n.gith
ub.io/convolution

al-networks/

Stride = 2

http://cs231n.github.io/convolutional-networks/


Convolution Math

Each Convolutional Layer:

Inputs a volume of size WI×HI×DI (D is depth)

Requires four hyperparameters:

Number of filters K

their spatial extent N

the stride S

the amount of padding P

Produces a volume of size WO×HO×DO

WO = (WI − N + 2P) / S+1

HO  = (HI  −F +2P) / S+1 

DO  = K

This requires N⋅N⋅DI weights per filter, for a total of N⋅N⋅DI⋅K weights and K biases

In the output volume, the d-th depth slice (of size WO × HO) is the result of performing a convolution of the d-

th filter over the input volume with a stride of S, and then offset by d-th bias.


