```c
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
    int my_PE_num, number_to_send, message_received;
    MPI_Status status;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

    number_to_send = my_PE_num;
    if (my_PE_num==7)
        MPI_Send( &number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);
    else
        MPI_Send( &number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);

    MPI_Recv( &message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);

    printf("PE %d received %d.\n", my_PE_num, message_received);
    MPI_Finalize();
}
```
program shifter
 implicit none
 include 'mpif.h'

 integer my_pe_num, errcode, numbertosend, message_received
 integer status(MPI_STATUS_SIZE)

 call MPI_INIT(errcode)
 call MPI_COMM_RANK(MPI_COMM_WORLD, my_pe_num, errcode)

 numbertosend = my_pe_num
 if (my_pe_num.EQ.7) then
 call MPI_Send(numbertosend, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, errcode)
 else
 call MPI_Send(numbertosend, 1, MPI_INTEGER, my_pe_num+1, 10, MPI_COMM_WORLD, errcode)
 endif

 call MPI_Recv(message_received, 1, MPI_INTEGER, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, status, errcode)

 print *, 'PE', my_pe_num, ' received ', message_received, '.'
 call MPI_FINALIZE(errcode)
end
Exercise 1

Output

c557-603$ mpicc solution1.c

c557-603$ mpirun -n 8 a.out

PE 2 received 1.
PE 0 received 7.
PE 4 received 3.
PE 3 received 2.
PE 5 received 4.
PE 1 received 0.
PE 7 received 6.
PE 6 received 5.
```c
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
    int my_PE_num, number_to_send, message_received;
    MPI_Status status;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
    number_to_send = my_PE_num;

    if (my_PE_num==7)
        MPI_Ssend( &number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);
    else
        MPI_Ssend( &number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);

    MPI_Recv( &message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
    printf("PE %d received %d.\n", my_PE_num, message_received);
}
```

Deadlock!


```c
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
    int my_PE_num, number_to_send, message_received;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);
    number_to_send = my_PE_num;
    if (my_PE_num==7){
        MPI_Recv( &message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
        MPI_Ssend( &number_to_send, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);
    }
    else{
        MPI_Ssend( &number_to_send, 1, MPI_INT, my_PE_num+1, 10, MPI_COMM_WORLD);
        MPI_Recv( &message_received, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, &status);
    }
    printf("PE %d received %d.\n", my_PE_num, message_received);
    MPI_Finalize();
}
```

Breaks the Deadlock!
Exercise 2
Impossible Solution

- There is no possible solution.
- You can not accomplish this task with the commands you were given.
- It is simply impossible to be sure there isn’t a node somewhere “out there” that hasn’t yet responded.
- It is possible to create many “solutions” that will work *almost* all of the time. Particularly on a tightly coupled machine like Stampede.
- What if Bridges was nodes spread around the solar system. Would your answer still work?
- *It is generally not hard to write MPI codes that will always work. I gave you a really tricky problem to keep you humble, and not even all of our most basic set of commands to use.*
#include <stdio.h>
#include "mpi.h"

main(int argc, char** argv){
 int my_PE_num, numberofnodes, data;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_PE_num);

 if (my_PE_num==0)
 for (numberofnodes=1; numberofnodes<512; numberofnodes++)
 if (MPI_Send(&data, 1, MPI_INT, numberofnodes, 10, MPI_COMM_WORLD) != MPI_SUCCESS)
 break;

 printf("The number of nodes is %d.", numberofnodes);

 MPI_Finalize();
}