Syndicate: Software-defined Wide-area Storage

Jude Nelson
Princeton University
Background

- CCI*DIBBS NSF #1541318
- Princeton University + University of Arizona
 - OpenCloud + CyVerse (iPlant)
- Next-generation storage system
 - Coming online this year
 - Seeking community input and advise
Outline

- Problem Formulation
- What is Syndicate?
- Sample Applications
- UI/UX
- Status
The Good: Lots of Data Sources!

- My Site
- Public Datasets
- Cloud Storage
- University
- CDNs + Bulk xfer
- Corporate Lab

Legacy Data Stores

Legacy Data Stores
The Bad: Lots of Data Flows
The Ugly: Storage Reintegration

Drivers are only the beginning...

- Consistency
- Confidentiality
- Formatting
- Fault tolerance

- Access control
- Retention
- Authentication
- ...etc...

Workflow logic
Each workflow implements a built-in bespoke storage system!
Prior Work

- iRODS
 - Intra-site programmable storage
- Parrot Virtual FS
 - Driver layer for legacy services
- CernVM FS
 - Wide-area
 - End-to-end guarantees
 - Read-only
Syndicate: Programmable Storage

Workflow

Composable, reusable storage programs

Workflow-specific I/O pipeline

Stable API

Driver

Driver

Driver

Driver

Driver
Why Syndicate?

- Spans multiple sites and services
 - End-to-end authenticity
 - End-to-end correctness
 - No central points of trust
- Minimizes operational costs
 - Isolates, composes reusable storage logic
 - Reprogrammable fabric → Immutable workflows
 - Self-managing (SDN-like)
Syndicate Programming Model

- **Storage Programs**
 - UNIX-y data plane
 - I/O flow: typed byte stream
 - Composition: 1-to-1, 1-to-N, N-to-1

- **Gateways**
 - A storage program’s “process”
 - Stable workflow interface

- **Syndicate**
 - The “shell” for gateways
Syndicate Usage

- **Volume**
 - Tagged filesystem abstraction
 - Set of cooperating gateways
 - Workflow-specific data-plane behavior

- **Users**
 - Own, control, and run gateways
 - Volume owner: controls admission
Real-world Volume (1)

- iRODS
- CDN
- Hadoop

Encrypted writes

CyVerse network
TACC network

RESTful interface

Indexing

Encrypted reads

Stage data

HDFS interface
Spanning Multiple Networks

- Global control plane
 - Membership; configuration; I/O pipeline construction
 - Metadata Service (MS) in Google AppEngine
- Blockstack (USENIX ATC 2016)
 - Public LDAP-like DB
 - Control plane trust anchor
 - All nodes independently construct the same DB
 - DB journal embedded in a PoW blockchain
 - No central points of trust!
User Experience

1) PI makes user accounts
2) Users make volumes
3) Volume owners make and assign gateways
4) Users point client at volume owners
 - Client looks up volume owners in Blockstack
 - Client discovers accessible volumes
 - Client configures and runs gateways
Operator Experience

1) Bake Syndicate into VM images
2) Run site-local Blockstack server
3) Run Syndicate MS in Google AppEngine
4)
5) • MS is untrusted
6) • Helps gateway discovery
7) (optional) Run gateways on users’ behalf

Authentication through Blockstack
System Status

- Driver support
 - Amazon S3, Google Drive, Box.net, Dropbox, …
 - GenBank, M-Lab, iRODS, local disk, …
 - FUSE, Node.js, HDFS, shell programs, …
- Blockstack in production since 2015
 - https://github.com/blockstack
- Syndicate is alpha
 - Usable, with quirks
 - https://github.com/syndicate-storage
Thank you!

Questions?