
Introduction to OpenMP

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2025

What is OpenMP?

It is a directive based standard to allow programmers

to develop threaded parallel codes on shared memory

computers.

Directives

Program myscience

 ... serial code ...

!$omp parallel do

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$omp end parallel do

...

End Program myscience

CPU

Your original

Fortran or C code

Simple compiler hints

from coder.

Compiler generates

parallel threaded code.

Ignorant compiler just

sees some comments.

OpenMP

Compiler

Hint

Directives: an awesome idea whose time has arrived.

main() {

 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

 printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

 double pi = 0.0; long i;

 #pragma acc kernels

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

printf(“pi = %f\n”, pi/N);

}

GPU

OpenACC

Key Advantages Of This Approach

High-level. No involvement of pthreads or hardware specifics.

Single source. No forking off a separate code. Compile the same program for

multi-core or serial, non-parallel programmers can play along.

Efficient. Very favorable comparison to pthreads.

Performance portable. Easily scales to different configurations.

Incremental. Developers can port and tune parts of their application as

resources and profiling dictates. No wholesale rewrite required. Which can be

quick.

Broad Compiler Support (For 3.x)

Gnu

Intel

IBM

NVIDIA

Clang/Flang/LLVM

AMD

ARM

MS Visual Studio*

*MS is missing some useful pieces.

A True Standard With A History

POSIX threads

1997 OpenMP 1.0

1998 OpenMP 2.0

2005 OpenMP 2.5 (Combined C/C++/Fortran)

2008 OpenMP 3.0

2011 OpenMP 3.1

2013 OpenMP 4.0 (Accelerators)

2015 OpenMP 4.5

2018 OpenMP 5.0

2021 OpenMP 5.2

2024 OpenMP 6.0

OpenMP.org: specs and forums and useful links

 program hello

!$OMP PARALLEL

 print *,"Hello World."

!$OMP END PARALLEL

 stop
 end

int main(int argc, char** argv){

 #pragma omp parallel

 {

 printf("Hello world.\n");

 }

}

Hello World
Hello World in C Hello World in Fortran

Hello World.

Hello World.

Hello World.

Hello World.

Output with OMP_NUM_THREADS=4

General Directive Syntax and Scope

Fortran

!$omp parallel [clause …]
 structured block
!$omp end parallel

C

#pragma omp parallel [clause …]
{

 structured block

}

This is how these directives integrate into code:

I will indent the directives at the natural code indentation level for readability. It is a

common practice to always start them in the first column (ala #define/#ifdef). Either

is fine with C or Fortran 90 compilers.

clause: optional modifiers
Which we shall discuss

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 4

void *PrintHello(void *threadid)

{

printf("Hello World.\n");

 pthread_exit(NULL);

}

int main (int argc, char *argv[])

{

 pthread_t threads[NUM_THREADS];

 int rc;

 long t;

 for(t=0; t<NUM_THREADS; t++){

 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

 if (rc){

 exit(-1);

 }

 }

 pthread_exit(NULL);

}

Pthreads

Big Difference!

With pthreads, we changed the structure of the original code. Non-

threading programmers can’t understand new code.

We have separate sections for the original flow, and the threaded code.

Serial path now gone forever.

This only gets worse as we do more with the code.

Exact same situation as assembly used to be. How much hand-assembled

code is still being written in HPC now that compilers have gotten so

efficient?

Thread vs. Process

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

Two Processes Two Threads

MPI

General Thread Capability

Master

Thread

Spawned

Threads

Thread

Killed

Typical Desktop Application Threading

Open Browser Tabs (Spawn Thread) Close Browser Tab (Kill Thread)

Typical Game Threading

Game Physics

Rendering

AI

Synchronization

HPC Application Threading

.

.

.

A[0] = 10;

.

.

.

.

.

.

i = i+1;

.

.

.

.

.

for(…){

 B[100][100]

}

.

.

.

.

.

.

if (y=4){..

.

.

.

.

.

.

print X

.

.

.

.

.

for(…){

X[1000][10..

}

.

.

.

for or do loop for or do loopworks on big array works on big array

HPC Use of OpenMP

This last fact means that we will emphasize the capabilities of OpenMP

with a different focus than non-HPC programmers.

We will focus on getting our kernels to parallelize well.

We will be most concerned with dependencies, and not deadlocks and race

conditions which confound other OpenMP applications.

This is very different from the generic approach you are likely to see

elsewhere. The “encyclopedic” version can obscure how easy it is to get

started with common loops.

But we will return to the most generic and flexible capabilities before we

are done (OpenMP tasks).

This looks easy! Too easy…

Why don’t we just throw parallel for/do (the OpenMP command for this purpose)

in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there are several general issues that would generate incorrect

results or program hangs if we don’t recognize them:

Data Dependencies

Data Races

Data Dependencies

Most directive-based parallelization consists of splitting up big do/for

loops into independent chunks that the many processors can work on

simultaneously.

Take, for example, a simple for loop like this:

for(index=0; index<10000; index++)

 Array[index] = 4 * Array[index];

When run on 10 cores, it will execute something like this…

for(index=0, index<999,index++)

 Array[index] = 4*Array[index];

Core

0

for(index=1000, index<1999,index++)

 Array[index] = 4*Array[index];

Core

1

for(index=2000, index<2999,index++)

 Array[index] = 4*Array[index];

Core

2

for(index=3000, index<3999,index++)

 Array[index] = 4*Array[index];

Core

3

for(index=4000, index<4999,index++)

 Array[index] = 4*Array[index];

Core

4 ….

No Data Dependency

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1; index<10000; index++)

 Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.

Data Dependency

Now core 1, in trying to calculate its first iteration,

for(index=1000; index<1999; index++)

 Array[1000] = 4 * Array[1000] – Array[999];

needs the result of core 0’s last iteration. If we want the correct

(“same as serial”) result, we need to wait until core 0 finishes.

Likewise for cores 2, 3, …

Recognizing and Eliminating Data Dependencies

Recognize dependencies by looking for:

A dependence between iterations. Often visible due to use of differing indices.

Is the variable written and also read?

Any non-indexed (scaler) variables that are written to by index dependent variables.

You may get compiler warnings, and you may not.

Can these be overcome?

Sometimes a simple rearrangement of the code will suffice. There is a common bag of

tricks developed for this as this issue goes back 40 years in HPC (for vectorized

computers). Many are quite trivial to apply.

We will now learn about OpenMP capabilities that will make some of these disappear.

Sometimes they are fundamental to the algorithm and there is no answer other than

rewrite completely or leave as serial.

But you must catch these!

for(index=1000; index<1999; index++)

 Array[1000] = 4 * Array[1000] – Array[999];

For example, one possible fix here could be to:

1) Do the multiply

2) Shift the array by 1

3) Do the subtraction

(2) is non-trivial as we have to make a complete copy of the array

(probably want to have one pre-allocated). But, this can also be done in

parallel.

Plenty of Loops Don't Have Dependencies

If there aren't dependencies, we can go ahead and parallelize the loop. In the most straightforward

case:

int main (int argc, char *argv[]){

int array[1000000];

#pragma omp parallel for

for (int i = 0; i <= 1000000; i++){

array[i] = i;

}

}

Standard C

program simple

integer array(1000000)

!$omp parallel do

do i = 1,1000000

array(i)=i

enddo

!$omp end parallel do

end program

Fortran

Compile and Run

Fortran:

nvfortran –mp simple.f90

export OMP_NUM_THREADS=8

a.out

We are using PGI compilers here. Others are very similar (-fopenmp, -omp). Likewise, if you are using a

different command shell, you may do “setenv OMP_NUM_THREADS 8”.

C:

nvc –mp simple.c

export OMP_NUM_THREADS=8

a.out

If you wonder if/how your directives are taking effect (a very valid question), the compilers always offer

to be more verbose. With PGI, you can add the "-Minfo=mp" option. Give it a try.

Activate

OpenMP

directives Run with 8

threads

Loops with Shared Variables

Most serious loops have other variables besides an array or two. The sharing of these

variables introduces some potential issues. Here is a toy problem with a scalar that is

written to.

float height[1000], width[1000], cost_of_paint[1000];

float area, price_per_gallon = 20.00, coverage = 20.5;

.

.

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

real*8 height(1000),width(1000),cost_of_paint(1000)

real*8 area, price_per_gallon, coverage

.

.

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

C Version Fortran Version

Applying Some OpenMP

A quick dab of OpenMP would start like this:

#pragma omp parallel for

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end parallel do

C Version Fortran Version

We are requesting that this for/do loop be executed in parallel on the available

processors.

Something is wrong.

If we ran this code we would find that sometimes our results differ from the serial code (and are simply

wrong). The reason is that we have a shared variable that is getting overwritten by all of the threads.

#pragma omp parallel for

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end do

Between its assignment and use by any one thread, there are other threads (7 here) potentially

accessing and changing it. This is prone to error. Possibly the worst kind: the intermittent one.

Shared Variables

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

height

area

width

cost_of_paint

With Two Threads

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

By default variables are shared in OpenMP. Exceptions include index variables and

variables declared inside parallel regions (C/C++). More later.

What We Want

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

height

area

width

cost_of_paint

With Two Threads

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

We can accomplish this with the private clause.

area area

Private Clause At Work

Apply the private clause and we have a working loop:

#pragma omp parallel for private(area)

for (index=0; index<1000; index++){

area = height[index] * width[index];

cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do private(area)

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end parallel do

C Version Fortran Version

There are several ways we might wish these controlled variables to behave. Let’s

look at the related data-sharing clauses. private is the most common by far.

Other Data Sharing Clauses

shared(list) This is the default (with the exception of index and locally declared

variables. You might use this clause for clarification purposes.

firstprivate(list) This will initialize the privates with the value from the master thread.

Otherwise, this does not happen!

lastprivate(list) This will copy out the last thread value into the master thread copy.

Otherwise, this does not happen! Available in for/do loop or section only,

not available where “last iteration” isn’t clearly defined.

default(list) You can change the default type to some of the others.

threadprivate(list) Define at global level and these privates will be available in every parallel

region. Use with copyin() to initialize values from master thread. Can

think of these as on heap, while privates are on stack.

What is automatically private?

The default rules for sharing (which you should never be shy about redundantly designating with clauses)

have a few subtleties.

Default is shared, except for things that can not possibly be:

outer loop index variable

inner loop index variables in Fortran, but not in C.

local variables in any called subroutine, unless using static (C) or save (Fortran)

variables declared within the block (for C).

This last makes the C99 loop syntax quite convenient for nested loops:

#pragma omp parallel for

for (int i = 0; i <= n; i++){

for (int j = 0; j<= m; j++){

Array[i][j] = Array[i][j]+1

}

}

Loop Order and Depth

The parallel for/do loop is common enough that we want to make sure we really

understand what is going on.

#pragma omp parallel for private (i,j)

for (i = 0; i <= n; i++){

for (j = 0; j<= m; j++){

Array[i][j] = Array[i][j]+1

}

}

!$omp parallel do private (i,j)

 do i = 2,n

 do j = 2,i-1

 Array(j,i) = Array(j,i)+1

 end do

 end do

!$omp end parallel do

Optionalj is required

Loop

that is

parallelized
Index order reversed

(for good reason)

In general (well beyond OpenMP reasons), you want your innermost loop to index over

adjacent items in memory. This is opposite for Fortran and C. In C this last index

changes fastest. We can collapse nested loops with a collapse(n) clause.

Prime Counter
Let’s try a slightly more complicated loop. This counts prime numbers.

include <stdlib.h>

include <stdio.h>

int main (int argc, char *argv[]){

int n = 500000;

int not_primes=0;

int i,j;

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

printf("Primes: %d\n", n - not_primes);

}

program primes

 integer n, not_primes, i, j

 n = 500000

 not_primes=0

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

 print *, 'Primes: ', n - not_primes

 end program

C Version Fortran Version

Parallel Prime Counter

The most obvious thing is to parallelize the main loop.

#pragma omp parallel for private (j)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

C Version Fortran Version

If we run this code on multiple threads, we will find that we get inconsistent results. What is going on?

Data Races

The problem here is a shared variable (not_primes) that is being written to by many threads.

The statement not_primes = not_primes + 1 may look “atomic”, but in reality it requires the

processor to first read, then update, then write the variable into memory. While this is happening,

another thread may be writing its own (now obsolete) update. In this case, some of the additions to

not_primes may be overwritten and ignored.

This sounds similar to our paint calculator example earlier. So will private fix this? Almost. Private

variables aren’t subject to data races, and we will end up with multiple valid not_prime subtotals. So far

so good.

The question then becomes, how do we sum these up into the real total we are looking for?

It is common to have a private variable that has to live on after the loop. This requires us to reduce

these private copies back to a single scaler.

Reductions

Reductions are private variables that must be reduced to a single value eventually.

#pragma omp parallel for private (j) \

reduction(+: not_primes)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes)

do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

end do

!$omp end parallel do

C Version Fortran Version

At the end of the parallel region (the do/for loop), the private reduction variables will get combined

using the operation we specified. Here, it is sum (+).

Line

Continuation

Reductions

In addition to sum, we have a number of other options. You will find sum, min and

max to be the most common. Note that the private variable copies are all initialized

to the values specified.

Operation Initialization

+ 0

max least number possible

min largest number possible

- 0

Bit (&, |, ^, iand, ior) ~0, 0

Logical (&&, ||, .and., .or.) 1,0, .true., .false.

The 4.0 standard even allows you to define your own. You probably won't.

We shall return.

#pragma omp parallel for private (j) \

reduction(+:not_primes)

for (i = 2; i <= n; i++){

for (j = 2; j < i; j++){

if (i % j == 0){

not_primes++;

break;

}

}

}

!$omp parallel do reduction(+:not_primes)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

C Version
Fortran Version

A few notes before we leave (for now):

• The OpenMP standard forbids branching out of parallel do/for loops, although you can now cancel. Since the

outside loop is the threaded one (that is how it works), our break/exit statement for the inside loop are OK.

• You can verify the output at primes.utm.edu/nthprime/index.php#piofx Note that we count 1 as prime.

They do not.

Our Exercise: Laplace Solver

We also use this for MPI and OpenACC. It is a great simulation problem, not rigged for OpenMP.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of its

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
}

do j=1,columns
 do i=1,rows
 temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0;

 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

Serial C Code Subroutines

void track_progress(int iteration) {

 int i;

 printf("-- Iteration: %d --\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
 }
 printf("\n");
}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

 int i, j; // grid indexes
 int max_iterations; // number of iterations
 int iteration=1; // current iteration
 double dt=100; // largest change in t
 struct timeval start_time, stop_time, elapsed_time; // timers

 printf("Maximum iterations [100-4000]?\n");
 scanf("%d", &max_iterations);

 gettimeofday(&start_time,NULL); // Unix timer

 initialize(); // initialize Temp_last including boundary conditions

 // do until error is minimal or until max steps
 while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 // main calculation: average my four neighbors
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 // copy grid to old grid for next iteration and find latest dt
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 // periodically print test values
 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
 }

Whole C Code

 gettimeofday(&stop_time,NULL);
 timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

 printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
 printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

 int i;

 printf("---------- Iteration number: %d ------------\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
 }
 printf("\n");
}

do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *

program serial
 implicit none

 !Size of plate
 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 double precision, parameter :: max_temp_error=0.01

 integer :: i, j, max_iterations, iteration=1
 double precision :: dt=100.0
 real :: start_time, stop_time

 double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

 print*, 'Maximum iterations [100-4000]?'
 read*, max_iterations

 call cpu_time(start_time) !Fortran timer

 call initialize(temperature_last)

 !do until error is minimal or until maximum steps
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 !copy grid to old grid for next iteration and find max change
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 !periodically print test values
 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

 call cpu_time(stop_time)

 print*, 'Max error at iteration ', iteration-1, ' was ',dt
 print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *
end subroutine track_progress

Exercise 1: Use OpenMP to parallelize the Jacobi loops
(About 45 minutes)

2) Edit laplace_serial.c or laplace_serial.f90 (your choice) and add directives where it helps. Try

adding "-Minfo=mp" to verify what you are doing.

3) Run your code on various numbers of cores (such as 8, per below) and see what kind of speedup

you achieve.

> nvc -mp laplace_omp.c or nvfortran -mp laplace_omp.f90

> export OMP_NUM_THREADS=8

> a.out

1) Log onto a node requesting all the 32 cores.

> interact –n 32

Exercise 1 C Solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 #pragma omp parallel for private(i,j)
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 #pragma omp parallel for reduction(max:dt) private(i,j)
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
}

Thread this loop

Also this one, with a

reduction

Exercise 1 Fortran Solution
do while (dt > max_temp_error .and. iteration <= max_iterations)

 !$omp parallel do
 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo
 !$omp end parallel do

 dt=0.0

 !$omp parallel do reduction(max:dt)
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo
 !$omp end parallel do

 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

Thread this loop

Also here, plus a

reduction

Scaling?
For the solution in the Laplace directory, we found this kind of scaling when running to

convergence at 3372 iterations. This is on a clean 128 core node.

Codes were compiled with no extra flags, and there was some minor variability.

Threads C (s) Fortran (s) Speedup

Serial 21.4 20.6

2 10.8 10.3 2.0

4 5.4 5.2 4.0

8 2.7 2.6 7.9

16 1.4 1.4 14.7

32 0.80 0.80 25.7

64 0.59 0.59 34.9

128 1.4 1.4 14.7The larger version of this problem that we use for the hybrid programming example (10K x

10K) continues to scale nicely on Bridges EM large memory nodes to 96 cores!

Time for a breather.

Congratulations, you have now learned the OpenMP parallel for/do

loop. That is a pretty solid basis for using OpenMP. To recap, you just

have to keep an eye out for:

Dependencies

Data races

and know how to deal with them using:

Private variables

Reductions

	Slide 1: Introduction to OpenMP
	Slide 2: What is OpenMP?
	Slide 3: Directives
	Slide 4: Directives: an awesome idea whose time has arrived.
	Slide 5: Key Advantages Of This Approach
	Slide 6: Broad Compiler Support (For 3.x)
	Slide 7: A True Standard With A History
	Slide 8: Hello World
	Slide 9: General Directive Syntax and Scope
	Slide 10: Pthreads
	Slide 11: Big Difference!
	Slide 12: Thread vs. Process
	Slide 13: General Thread Capability
	Slide 14: Typical Desktop Application Threading
	Slide 15: Typical Game Threading
	Slide 16: HPC Application Threading
	Slide 17: HPC Use of OpenMP
	Slide 18: This looks easy! Too easy…
	Slide 19: Data Dependencies
	Slide 20: No Data Dependency
	Slide 21: Data Dependency
	Slide 22: Data Dependency
	Slide 23: Recognizing and Eliminating Data Dependencies
	Slide 24: Plenty of Loops Don't Have Dependencies
	Slide 25: Compile and Run
	Slide 26: Loops with Shared Variables
	Slide 27: Applying Some OpenMP
	Slide 28: Something is wrong.
	Slide 29: Shared Variables
	Slide 30: What We Want
	Slide 31: Private Clause At Work
	Slide 32: Other Data Sharing Clauses
	Slide 33: What is automatically private?
	Slide 34: Loop Order and Depth
	Slide 35: Prime Counter
	Slide 36: Parallel Prime Counter
	Slide 37: Data Races
	Slide 38: Reductions
	Slide 39: Reductions
	Slide 40: We shall return.
	Slide 41: Our Exercise: Laplace Solver
	Slide 42: Exercise Foundation: Jacobi Iteration
	Slide 43: Serial Code Implementation
	Slide 44: Serial C Code (kernel)
	Slide 45: Serial C Code Subroutines
	Slide 46: Whole C Code
	Slide 47: Serial Fortran Code (kernel)
	Slide 48: Serial Fortran Code Subroutines
	Slide 49: Whole Fortran Code
	Slide 50: Exercise 1: Use OpenMP to parallelize the Jacobi loops (About 45 minutes)
	Slide 51: Exercise 1 C Solution
	Slide 52: Exercise 1 Fortran Solution
	Slide 53: Scaling?
	Slide 54: Time for a breather.

